BoosterpaQ - Hydro MPC

Installation and operating instructions
LIMITED WARRANTY

Products manufactured by GRUNDFOS PUMPS CORPORATION (Grundfos) are warranted to the original user only to be free of defects in material and workmanship for a period of 24 months from date of installation, but not more than 30 months from date of manufacture. Grundfos' liability under this warranty shall be limited to repairing or replacing at Grundfos' option, without charge, F.O.B. Grundfos' factory or authorized service station, any product of Grundfos' manufacture. Grundfos will not be liable for any costs of removal, installation, transportation, or any other charges which may arise in connection with a warranty claim. Products which are sold but not manufactured by Grundfos are subject to the warranty provided by the manufacturer of said products and not by Grundfos' warranty. Grundfos will not be liable for damage or wear to products caused by abnormal operating conditions, accident, abuse, misuse, unauthorized alteration or repair, or if the product was not installed in accordance with Grundfos' printed installation and operating instructions.

To obtain service under this warranty, the defective product must be returned to the distributor or dealer of Grundfos' products from which it was purchased together with proof of purchase and installation date, failure date, and supporting installation data. Unless otherwise provided, the distributor or dealer will contact Grundfos or an authorized service station for instructions. Any defective product to be returned to Grundfos or a service station must be sent freight prepaid; documentation supporting the warranty claim and/or a Return Material Authorization must be included if so instructed.

GRUNDFOS WILL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOSSES, OR EXPENSES ARISING FROM INSTALLATION, USE, OR ANY OTHER CAUSES. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WHICH EXTEND BEYOND THOSE WARRANTIES DESCRIBED OR REFERRED TO ABOVE.

Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages and some jurisdictions do not allow limit actions on how long implied warranties may last. Therefore, the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from jurisdiction to jurisdiction.
1. Symbols used in this document

Warning
If these safety instructions are not observed, it may result in personal injury!

Caution
If these safety instructions are not observed, it may result in malfunction or damage to the equipment!

Note
Notes or instructions that make the job easier and ensure safe operation.

2. Scope of these instructions

These installation and operating instructions apply to Grundfos Hydro MPC booster sets. Hydro MPC is a range of factory-assembled booster sets, ready for installation and operation.
3. Product description
As standard, Hydro MPC booster sets consist of two to six pumps coupled in parallel and mounted on a common base frame with all the necessary fittings and a control cabinet.

Note
A diaphragm tank must be included in most installations.

Hydro MPC booster sets are divided into seven groups based on control type:

<table>
<thead>
<tr>
<th>Control variant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-E</td>
<td>2 to 6 CRE pumps</td>
</tr>
<tr>
<td>-ED</td>
<td>2 CRE pumps and up to 4 mains-operated CR pumps</td>
</tr>
<tr>
<td>-ES</td>
<td>1 CRE pump and up to 5 mains-operated CR pumps</td>
</tr>
<tr>
<td>-EF</td>
<td>2 to 6 CR pumps connected to external frequency converters</td>
</tr>
<tr>
<td>-EDF</td>
<td>2 CR pumps connected to external frequency converters and up to 4 mains-operated CR pumps</td>
</tr>
<tr>
<td>-F</td>
<td>Up to 6 CR pumps connected to an external frequency converter. The speed controlled operation alternates between the pumps.</td>
</tr>
<tr>
<td>-S</td>
<td>2 or 6 mains-operated CR pumps</td>
</tr>
</tbody>
</table>

See also 6.1 *Examples of control variants.*

Hydro MPC booster sets always includes application-optimised software for setting the booster set to the application in question.

Fig. 1 Hydro MPC booster set

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control cabinet</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Nameplate</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Suction manifold (stainless steel)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Isolating valve</td>
<td>2 per pump</td>
</tr>
<tr>
<td>5</td>
<td>Base frame (stainless steel)</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Non-return valve</td>
<td>1 per pump</td>
</tr>
<tr>
<td>7</td>
<td>Discharge manifold (stainless steel)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Pressure transmitter/pressure gauge on suction and discharge manifolds</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Pump</td>
<td>2 - 6</td>
</tr>
</tbody>
</table>
4. Nameplate
The nameplate of the booster set is fitted on the base frame.

![Nameplate Diagram]

Fig. 2 Nameplate

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type designation</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
</tr>
<tr>
<td>3</td>
<td>Serial number</td>
</tr>
<tr>
<td>4</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>5</td>
<td>Maximum operating pressure in psi</td>
</tr>
<tr>
<td>6</td>
<td>Liquid temperature in °F</td>
</tr>
<tr>
<td>7</td>
<td>Maximum flow rate in GPM</td>
</tr>
<tr>
<td>8</td>
<td>Minimum head in ft.</td>
</tr>
<tr>
<td>9</td>
<td>Number of fixed speed pumps</td>
</tr>
<tr>
<td>10</td>
<td>Motor power in HP</td>
</tr>
<tr>
<td>11</td>
<td>Nominal voltage in volts</td>
</tr>
<tr>
<td>12</td>
<td>Number of E pumps</td>
</tr>
<tr>
<td>13</td>
<td>Motor power in HP</td>
</tr>
<tr>
<td>14</td>
<td>Nominal voltage in volts</td>
</tr>
<tr>
<td>15</td>
<td>Order number</td>
</tr>
<tr>
<td>16</td>
<td>Options</td>
</tr>
<tr>
<td>17</td>
<td>Options</td>
</tr>
<tr>
<td>18</td>
<td>Options</td>
</tr>
<tr>
<td>19</td>
<td>Options</td>
</tr>
<tr>
<td>20</td>
<td>Options</td>
</tr>
<tr>
<td>21</td>
<td>Options</td>
</tr>
<tr>
<td>22</td>
<td>Enclosure class & panel P/N</td>
</tr>
<tr>
<td>23</td>
<td>Weight in lb</td>
</tr>
<tr>
<td>24</td>
<td>Approval marks</td>
</tr>
<tr>
<td>25</td>
<td>Production location & date code</td>
</tr>
</tbody>
</table>

Assembled in US
5. Software label

The software label is placed on the back of the CU 351 located inside the panel door.

![Software label diagram](image)

Fig. 3 Software label

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control MPC - GSC file number</td>
</tr>
<tr>
<td>2</td>
<td>Control MPC options - GSC file numbers</td>
</tr>
<tr>
<td>3</td>
<td>Hydro MPC - GSC file number</td>
</tr>
<tr>
<td>4</td>
<td>Hydro MPC options - GSC file numbers</td>
</tr>
<tr>
<td>5</td>
<td>Pump data - GSC file numbers</td>
</tr>
</tbody>
</table>

Note

A .gsc *(Grundfos Standard Configuration)* file is a configuration data file.

6. Type key

Example

<table>
<thead>
<tr>
<th>Type range</th>
<th>Hydro MPC</th>
<th>-ED</th>
<th>2 CRE 5-10</th>
<th>1 CR 5-10</th>
<th>3 x 460 V, 60 Hz</th>
</tr>
</thead>
</table>

Subgroups:
- Pumps with integrated frequency converter: -E, -ED, -ES
- Pumps with external frequency converter: -EF, -EDF, -F
- Mains-operated pumps (start/stop): -S

Number of pumps with integrated frequency converter and pump type
Number of mains-operated pumps and pump type
Supply voltage, frequency
6.1 Examples of control variants

Booster sets with motors that include an integrated frequency converter

<table>
<thead>
<tr>
<th>Hydro MPC-E</th>
<th>Hydro MPC-ED</th>
<th>Hydro MPC-ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro MPC booster set with three CRE pumps.</td>
<td>Hydro MPC booster set with two CRE pumps and one mains-operated CR pump.</td>
<td>Hydro MPC booster set with one CRE pump and two mains-operated CR pumps.</td>
</tr>
</tbody>
</table>

- Hydro MPC-E maintains a constant pressure through continuous adjustment of the speed of the pumps.
- The system performance is adjusted to the demand through cutting in/out the required number of pumps and through parallel control of the pumps in operation.
- Pump changeover is automatic and depends on load, time and fault.
- All pumps in operation will run at equal speed.

- Hydro MPC-ED maintains a constant pressure through continuous adjustment of the speed of two CRE pumps, while the CR pump is mains-operated.
- One CRE pump always starts first. If the pressure cannot be maintained by the pump, the second CRE pump will be cut in. If the two CRE pumps cannot maintain the pressure, the CR pump will be cut in.
- Pump changeover is automatic and depends on load, time and fault.

- Hydro MPC-ES maintains a constant pressure through continuous adjustment of the speed of the CRE pump. The other pumps are cut in/out according to demand and to achieve a performance corresponding to the consumption.
- The CRE pump always starts first. If the pressure cannot be maintained by the pump, one or both CR pumps will be cut in.
- Changeover among the pumps on mains operation is automatic and depends on load, time and fault.

Note:
1.) CRE refers to CR pump with motor/integrated frequency drive.
2.) CR refers to CR pump with constant speed motor (mains-operated or DOL)
Booster sets with motors connected to external frequency converters

<table>
<thead>
<tr>
<th>Hydro MPC-EF</th>
<th>Hydro MPC-EDF</th>
<th>Hydro MPC-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro MPC booster set with three CR pumps each connected to an external frequency converter in the control cabinet.</td>
<td>Hydro MPC booster set with two CR pumps connected to external frequency converters in the control cabinet and one mains-operated CR pump.</td>
<td>Hydro MPC booster set with three CR pumps connected to an external frequency converter in the control cabinet. The speed-controlled operation alternates between the pumps.</td>
</tr>
</tbody>
</table>

- One CR pump in operation.
- One CR pump connected to an external frequency converter in operation.
- One CR pump connected to an external frequency converter in operation.
- Three CR pumps in operation.
- Two CR pumps connected to external frequency converters and one mains-operated CR pump in operation.
- One CR pump connected to an external frequency converter and two mains-operated CR pumps in operation.

- Hydro MPC-EF maintains a constant pressure through continuous adjustment of the speed of the pumps connected.
- The system performance is adjusted to the demand through cutting in/out the required number of pumps and through parallel control of the pumps in operation.
- Pump changeover is automatic and depends on load, time and fault.
- All pumps in operation will run at equal speed.

- Hydro MPC-EDF maintains a constant pressure through continuous adjustment of the speed of two CR pumps connected to external frequency converters, while the third CR pump is mains-operated.
- One CR pump connected to an external frequency converter always starts first. If the pressure cannot be maintained by the pump, the second CR pump connected to an external frequency converter will be cut in. If the pressure cannot be maintained by the two pumps, a mains-operated CR pump will be cut in.
- Pump changeover is automatic and depends on load, time and fault.

- Hydro MPC-F maintains a constant pressure through continuous adjustment of the speed of the CR pump connected to an external frequency converter. The speed controlled operation alternates between the pumps.
- One CR pump connected to the external frequency converter always starts first. If the pressure cannot be maintained by the pump, one or two mains-operated CR pumps will be cut in.
- Pump changeover is automatic and depends on load, time and fault.
Booster set with mains-operated pumps also called DOL (on/off)

Hydro MPC-S

Hydro MPC booster set with three mains-operated CR(I) pumps.

- One mains-operated CR pump in operation.
- Three mains-operated CR pumps in operation.

- Hydro MPC-S maintains pressure range through cutting in/out the required number of pumps.
- The operating range of the pumps will lie between H_{set} and H_{stop} (cut-out pressure). The cut-out pressure cannot be set but is calculated automatically.
- Pump changeover is automatic and depends on load, time and fault.
7. Installation

Warning
Installation and operation must comply with local regulations and accepted codes of good practice.

Before installation check that

- the booster set corresponds to the one ordered
- no visible parts have been damaged.

7.1 Mechanical installation

7.1.1 Location

The booster set must be installed in a well ventilated room to ensure sufficient cooling of the pumps and control cabinet.

Note

Hydro MPC is not designed for outdoor installation and must not be exposed to direct sunlight.

The booster set must have a 3 feet clearance in front and on the two sides for inspection and dismantling.

7.1.2 Pipework

Arrows on the pump base show the direction of flow of water through the pump.

The pipework connected to the booster set must be of adequate size. Either end of the manifold can be used to connect the piping, however, it is not recommended or allowed by accepted codes to have piping under the control panel. Apply sealing compound to the unused end of the manifold and fit the screw cap. For manifolds with flanges, fit a blanking flange with gasket.

To achieve optimum operation and minimize noise and vibration, it may be necessary to consider vibration dampening of the booster set.

Noise and vibration are generated by the rotations in the motor and pump and by the flow in pipework and fittings. The effect on the environment is subjective and depends on correct installation and the state of the other parts of the system.

If booster sets are installed where the first consumer on the line is close to the booster set, it is advisable to fit expansion joints on the suction and discharge pipes to prevent vibration being transmitted through the pipework.

![Fig. 4](image)

Fig. 4 Sketch showing the position of expansion joints, pipe supports and machine shoes

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expansion joint</td>
</tr>
<tr>
<td>2</td>
<td>Pipe support</td>
</tr>
<tr>
<td>3</td>
<td>Machine shoe</td>
</tr>
</tbody>
</table>

Note

Expansion joints, pipe supports and machine shoes shown in the figure above are not supplied with a standard booster set.

All nuts should be checked and re-tightened if necessary prior to start-up.

The pipes must be fastened to parts of the building to ensure that they cannot move or be twisted.

7.1.3 Foundation

The booster set should be positioned on an even and solid surface, for instance a concrete floor or foundation. If the booster set is not fitted with machine shoes, it must be bolted to the floor or foundation.

Note

As a rule unless protected, the weight of a concrete foundation should be 1.5 x the weight of the booster set.

7.1.4 Vibration dampers

To prevent the transmission of vibrations to buildings, it may be necessary to isolate the booster set foundation from building parts by means of vibration dampers.

The right damper varies from installation to installation, and a wrong damper may increase the vibration level. Vibration dampers should therefore be sized by the supplier of vibration dampers.

If the booster set is installed on a base frame with vibration dampers, expansion joints should always be fitted on the manifolds. This is important to prevent the booster set from "hanging" in the pipework.

7.1.5 Expansion joints

Expansion joints are installed to

- absorb expansions/contractions in the pipework caused by changing liquid temperature
- reduce mechanical strains in connection with pressure surges in the pipework
- isolate mechanical structure-borne noise in the pipework (only rubber bellows expansion joints).

Note

Expansion joints must not be installed to compensate for inaccuracies in the pipework such as center displacement of flanges.

Fit expansion joints at a distance of minimum 1 to 1½ times the nominal flange diameter from the manifold on the suction as well as on the discharge side. This prevents the development of turbulence in the expansion joints, resulting in better suction conditions and a minimum pressure loss on the pressure side. At high water velocities (> 10 ft/sec) it is advisable to install larger expansion joints corresponding to the pipework.

![Fig. 5](image)

Fig. 5 Examples of rubber bellows expansion joints without and with limit rods

Expansion joints with limit rods can be used to minimize the forces caused by the expansion joints. Expansion joints with limit rods are always recommended for flanges larger than 6 inches.

The pipework should be anchored so that it does not stress the expansion joints and the pump. Follow the supplier’s instructions and pass them on to advisers or pipe installers.
7.2 Electrical installation
The electrical installation should be carried out by an authorized person in accordance with local regulations and the relevant wiring diagram.
• The electrical installation of the booster set must comply with enclosure class, IP 54.
• Make sure that the booster set is suitable for the electricity supply to which it is connected.
• Make sure that the wire cross-section corresponds to the specifications in the wiring diagram.

The pump mains connection must be carried out as shown in the wiring diagram.
The connection of the electrical supply, transmitters and external monitoring equipment must be carried out by an authorized electrician in accordance with the NEC, local regulations and the BoosterpaQ wiring diagram.

Ensure that the Hydro MPC controls and the pumps are suitable for the electricity supply on which they will be used (see Technical Data). Please read the wiring diagram carefully. According to the NEC, if the motors cannot be seen from the control panel, they must be fitted with a disconnected switch.
Any BoosterpaQ that utilizes a variable frequency drive (E, ED, ES, EF, EDF, F) should be connected to an electrical supply that all phase lines are electrically symmetrical with respect to ground. A "four wire wye" electrical supply with line impedance between 0.5% - 3% is recommended. If a variable frequency drive is connected to a delta transformer or if line impedance is not within the recommended 0.5% - 3%, the drive may not operate correctly and may not provide optimum performance (excessive faults, erratic behavior, or complete failure). Ask your power company or electrician to determine what type of electrical supply is present. Generator supplied power must meet public utility power quality standards.

8. Start-up
1. Have a qualified person check for proper power supply and plumbing connections. Make sure the main power is off.
2. Check that the air pre-charge in the diaphragm tank is 0.7 times the required discharge pressure set-point (0.9 times for MBC-S systems). System pressure must not be applied to the tank connection during the tank precharge process. If water is supplied to the tank from the system, close the tank valve and make sure the main power is off.

Prime the system as follows
3. Suction pressure system (pumps are flooded at least as high as the highest part of the pumps)
 – close all discharge manifold pump isolation valves and open all inlet manifold pump isolation valves
 – open the vent plug on top of each pump. It is a small hex head screw in a large vent plug. Air and water will escape from the pump through a small hole in the large vent plug. When the air is out and water is flowing steadily, tighten the small hex head screw on the vent plug to stop the flow.

If you are filling an empty piping system, do not allow the pumps to run with the discharge valves wide open as cavitation may occur.

4. Suction lift system (the water source is below the pumps or does not flood the pumps to the highest point on the pumps)
 – close all discharge manifold pump isolation valves and open all inlet manifold pump isolation valves
 – for suction lift applications, a foot valve must be placed on the inlet piping at the water source (tank, etc). If there is a fill point above the highest point of the pumps, you may fill the system from this point. If there is no fill point above the highest point of the pumps, remove the large vent plug on each pump. Fill each pump until the water is up to the vent plug, then replace the vent plugs.

5. Ensure all circuit breakers are in the "on" position.
6. Make sure the discharge manifold pump isolating valves are closed. Switch on main power.

Caution The pumps may start at this time.
7. At this time "Start-up wizard" may now be ran. Steps 8 and 10 can be skipped upon completion of "Start-up wizard". If "Start-up wizard" could not be ran or already ran proceed to step 8.
8. Turn the MPC controller to Max. by performing the following: Move top line display to "Operation", next move down to "System operating mode" and press OK. Next use the Up or Down button and select the "Max". setting and press OK.
9. Vent the system by opening the vent plug on each pump (as in Step 3). Venting with the pumps running ensures all air is removed from the suction piping. Do not run the system with the discharge manifold pump isolation valves closed more than five minutes to prevent overheating of the pump liquid.
10. Turn the MPC controller to Stop by performing Step 8, again and select "Stop" instead of "Max". As pumps stop, check pump rotation. Repeat as necessary. If the area is dark, a flashlight may be required, or remove a coupling guard on each pump for better visibility. Disconnect the main power when removing coupling guards.

Warning Do not touch the couplings while the pumps are turning as injury may result. Replace all coupling guards after the rotation check. Disconnect main power when removing and replacing coupling guards (or open service disconnect switches if this option was supplied).

If the rotation is incorrect on any 3 phase pumps, switch any 2 of the 3 power main wires supplied to the control panel (L1, L2, L3). If that doesn’t correct the rotation, call your Grundfos representative.

Note If you are filling an empty piping system, do not allow the pumps to run with the discharge valves wide open as cavitation may occur.

If you are filling an empty piping system, do not allow the pumps to run with the discharge valves wide open as cavitation may occur.

11. Upon completion of venting pumps and checking for correct rotation you are now ready to bring BoosterpaQ online. With the discharge manifold isolation valves still closed, turn the MPC controller to "Max". (See Step 8 above). Partially open each pump discharge isolation valve to allow water to enter into discharge piping of BoosterpaQ. Continue the process of filling the discharge piping until discharge piping pressure is approximately desired setpoint pressure of BoosterpaQ.
12. Turn MPC controller to "Normal" by performing Step 8 again and select "Normal" instead of "Max". Open the discharge manifold isolation valves for each pump completely. System is now on line.
13. It may be necessary to clear alarms in fault log. Follow steps in paragraph sections 10.6.2 to clear alarms.
9. Control panel

The control panel in the front cover of the control cabinet features a display, a number of buttons and two indicator lights. The control panel enables manual setting and change of setpoint.

![Control Panel Diagram](image)

Fig. 6 Hydro MPC control panel

Key:

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Display</td>
</tr>
<tr>
<td>2</td>
<td>Arrow to the right</td>
</tr>
<tr>
<td>3</td>
<td>Help</td>
</tr>
<tr>
<td>4</td>
<td>Up</td>
</tr>
<tr>
<td>5</td>
<td>Down</td>
</tr>
<tr>
<td>6</td>
<td>Plus</td>
</tr>
<tr>
<td>7</td>
<td>Minus</td>
</tr>
<tr>
<td>8</td>
<td>Esc</td>
</tr>
<tr>
<td>9</td>
<td>Home</td>
</tr>
<tr>
<td>10</td>
<td>Ok</td>
</tr>
<tr>
<td>11</td>
<td>Indicator light, operation (green)</td>
</tr>
<tr>
<td>12</td>
<td>Indicator light, fault (red)</td>
</tr>
<tr>
<td>13</td>
<td>Contrast</td>
</tr>
</tbody>
</table>

9.1 Display (pos. 1)

![Display Design](image)

Fig. 7 Display design

9.1.1 Menu line

The menu line (A) is illustrated in fig. 7. The display has four main menus:

<table>
<thead>
<tr>
<th>Status:</th>
<th>Indication of system status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation:</td>
<td>Change of operating parameters such as setpoint (password option)</td>
</tr>
<tr>
<td>Alarm:</td>
<td>Alarm log for fault finding</td>
</tr>
<tr>
<td>Settings:</td>
<td>Change of settings (password option)</td>
</tr>
</tbody>
</table>

9.1.2 Top line

The top line (B) is illustrated in fig. 7. The top line shows:

- the display number and title (left side)
- the selected menu (left side)
- the symbol ⚠ in case of alarm (right side)
- the symbol 🚪 if the service language has been selected (right side).

9.1.3 Graphical illustration

The graphical illustration may show a status, an indication or other elements, depending on the position in the menu structure. The illustration may show the entire system or part of it as well as various settings. When the graphical illustration is shown, a list will appear (see 9.1.4). The list shows:

- the status of alarms (see C in fig. 7)
- the system (see D in fig. 7) and
- the pumps (see E in fig. 7).

9.1.4 List

The list includes one or more lines with information grouped to the left and to the right. The left side shows texts, and the right side shows values. Headlines and empty lines cannot be selected.

9.1.5 Scroll bar

If the list of illustration elements exceeds the display, the symbols ▲ and ▼ will appear in the scroll bar to the right. Use the ▲ and ▼ buttons to move up and down in the list.

9.1.6 Bottom line

The bottom line shows the date and time.
9.2 Buttons and indicator lights
The buttons (pos. 2 to 10) are active when they are illuminated.

9.2.1 Arrow to the right (pos. 2)
Press the button to move to the next menu in the menu structure. If you press when the Settings menu is highlighted, you go to the Status menu.

9.2.2 Help (pos. 3)
When the button is illuminated, a help text applying to the current display will appear if the button is pressed.
Close the text by pressing the button.

9.2.3 Up and down (pos. 4 and 5)
Press the and buttons to move up and down in lists.
A text can be selected when it is in a box.
If a text is marked and the button is pressed, the text above will be marked instead. If the button is pressed, the text below will be marked.
If the button is pressed in the last line in the list, the first line will be marked.
If the button is pressed in the first line in the list, the last line will be marked.

9.2.4 Plus and minus (pos. 6 and 7)
Use the and buttons to increase and reduce values.
A value is activated when the button is pressed.

9.2.5 Esc (pos. 8)
Use the button to go one display back in the menu.
If a value has been changed and the button is pressed, the new value will not be saved. For further information, see 9.2.7 Ok (pos. 10).
If the button is pressed before the button, the new value will be saved. For further information, see 9.2.7 Ok (pos. 10).

9.2.6 Home (pos. 9)
Press the button to return to the Status menu.

9.2.7 Ok (pos. 10)
Use the button as an enter button.
The button is also used to start the setting process for a value.
If a value has been changed and the button is pressed, the new value will be activated.

9.2.8 Indicator lights (pos. 11 and 12)
The Hydro MPC control panel incorporates a green and red indicator light.
The green indicator light is on when the Hydro MPC is in operation.
The green indicator light is flashing if the Hydro MPC has been set to stop.
The red indicator light is on if there is an alarm or a warning.
The fault can be identified from the alarm list.

9.2.9 Contrast (pos. 13)
The contrast in the display can be changed by means of the button:
1. Press the button.
2. Adjust the contrast with and .

9.2.10 Back light
If no button is touched for 15 minutes, the back light of the panel will be dimmed. The indicator lights are still active.
Press the button to re-activate the control panel and the back light.
10. Functions

10.1 Tree of functions

Key to the four main menus, Status, Operation, Alarm and Settings

Status
The Status menu shows alarms and the status of system and pumps.
Note: No settings can be made in this menu.

Operation
In the Operation menu the most basic parameters can be set, such as setpoint, operating mode, control mode and forced control.

Alarm
The Alarm menu gives an overview of alarms and warnings.
Alarms and warnings can be reset in this menu.

Settings
In the Settings menu it is possible to set various functions:

- Primary controller
 Setting of setpoint, setpoint influence, primary sensor and redundant primary sensor.

- Pump cascade control
 Setting of min. time between start/stop, number of starts/hour, number of standby pumps, forced pump changeover and test run.

- Secondary functions
 Setting of stop function, digital and analog inputs, min., max. and user-defined duty, pump curve data and control source.

- Monitoring functions
 Setting of dry-running protection, min. and max. pressure and external fault.

- Functions, CU 351
 Selection of service language, main language and units.
 Setting of time and date, passwords, Ethernet connection and GENIbus number.
4. Settings

4.1 Primary controller
 4.1.1 PI controller
 4.1.2 Alternative setpoints
 4.1.2.1 Alternative setpoints 2...
 4.1.3 Setpoint influence
 4.1.3.1 External setpoint influence
 4.1.4 Primary sensor
 4.1.5 Redundant primary sensor

4. Primary controller

4.2 Pump cascade control
 4.2.1 Min. time between start/stop
 4.2.2 Max. number of starts/hour
 4.2.3 Standby pumps
 4.2.4 Forced pump changeover
 4.2.5 Test run

4.3 Secondary functions
 4.3.1 Low flow estimation/stop function
 4.3.2 Overview of digital inputs
 4.3.2.1 Function, DI1..DI9 (CU 351), [10, 12, 14]
 4.3.3 Overview of analog inputs
 4.3.3.1 Function, AI1 (CU 351), [51]
 4.3.4 Overview of digital outputs
 4.3.4.1 Function, DO1 and DO2 (CU 351), [72, 75]
 4.3.5 Control source

4.4 Monitoring functions
 4.4.1 Dry-running protection
 4.4.1.1 Pressure/level switch
 4.4.1.2 Measurement, inlet pressure
 4.4.1.3 Measurement, tank level
 4.4.2 Min. pressure
 4.4.3 Max. pressure
 4.4.4 External fault

4.5 Functions, CU 351
 Change to service language (GB)
 Run wizard again
 4.5.1 Display language
 4.5.2 Display units
 4.5.2.1 Units for pressure
 4.5.2.2 Units for differential pressure
 4.5.2.3 Units for head
 4.5.2.4 Units for level
 4.5.2.5 Units for flow rate
 4.5.2.6 Units for volume
 4.5.2.7 Units for specific energy
 4.5.2.8 Units for temperature
 4.5.2.9 Units for power
 4.5.2.10 Units for energy
 4.5.3 Date and time
 4.5.4 Password
 4.5.5 Ethernet
 4.5.6 GENibus number
 4.5.7 Software status
<table>
<thead>
<tr>
<th>Section</th>
<th>Display and display number</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4 Status</td>
<td>Current alarms (3.1)</td>
<td>18</td>
</tr>
<tr>
<td>10.4 Status</td>
<td>System status (1.2)</td>
<td>18</td>
</tr>
<tr>
<td>10.4 Status</td>
<td>Operating mode (1.2.1)</td>
<td>19</td>
</tr>
<tr>
<td>10.4 Status</td>
<td>Setpoint (1.2.2)</td>
<td>19</td>
</tr>
<tr>
<td>10.4 Status</td>
<td>Setpoint influence (1.2.3)</td>
<td>20</td>
</tr>
<tr>
<td>10.4 Status</td>
<td>Measured values (1.2.4)</td>
<td>20</td>
</tr>
<tr>
<td>10.4 Status</td>
<td>Pump status (1.3 to 1.8)</td>
<td>20</td>
</tr>
<tr>
<td>10.5 Operation</td>
<td>Operation (2)</td>
<td>21</td>
</tr>
<tr>
<td>10.5 Operation</td>
<td>System operating mode (2.1)</td>
<td>21</td>
</tr>
<tr>
<td>10.5 Operation</td>
<td>Control mode (2.2)</td>
<td>21</td>
</tr>
<tr>
<td>10.5 Operation</td>
<td>Setting of setpoints (2.3)</td>
<td>22</td>
</tr>
<tr>
<td>10.5 Operation</td>
<td>Forced control (2.4) * (2.4.1 to 2.4.6)</td>
<td>23</td>
</tr>
<tr>
<td>10.5 Operation</td>
<td>Setting of individual operating mode (2.4.1 to 2.4.6)</td>
<td>23</td>
</tr>
<tr>
<td>10.6 Alarm</td>
<td>Alarm (3)</td>
<td>24</td>
</tr>
<tr>
<td>10.6 Alarm</td>
<td>Current alarms (3.1)</td>
<td>27</td>
</tr>
<tr>
<td>10.6 Alarm</td>
<td>Alarm log (3.2)</td>
<td>27</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Primary controller (4.1)</td>
<td>28</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>PI controller (4.1.1)</td>
<td>28</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Selection of alternative setpoints (4.1.2)</td>
<td>28</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Setting of alternative setpoints 2 to 7 (4.1.2.1 to 4.1.2.7)</td>
<td>28</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Setpoint influence (4.1.3)</td>
<td>29</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>External setpoint influence (4.1.3.1)</td>
<td>29</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Influence function (4.1.3.1.1)</td>
<td>30</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Primary sensor (4.1.4)</td>
<td>30</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Redundant primary sensor (4.1.5)</td>
<td>31</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Pump cascade control (4.2)</td>
<td>31</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Min. time between start/stop (4.2.1)</td>
<td>31</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Max. number of starts/hour (4.2.1)</td>
<td>32</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Standby pumps (4.2.3)</td>
<td>32</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Forced pump changeover (4.2.4)</td>
<td>33</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Test run (4.2.5)</td>
<td>33</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Secondary functions (4.3)</td>
<td>33</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Stop function (4.3.1)</td>
<td>34</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Overview of digital inputs (4.3.7)</td>
<td>35</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Functions of digital inputs (4.3.7.1 to 4.3.7.12)</td>
<td>35</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Overview of analog inputs (4.3.8)</td>
<td>36</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Setting of analog inputs (4.3.8.1 to 4.3.8.7)</td>
<td>36</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Functions of analog inputs (4.3.8.1.1 to 4.3.8.7.1)</td>
<td>37</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Overview of digital outputs (4.3.9)</td>
<td>37</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Function of digital outputs (4.3.9.1 to 4.3.9.16)</td>
<td>37</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Min., max. and user-defined duty (4.3.14)</td>
<td>38</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Min. duty (4.3.14.1)</td>
<td>38</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Max. duty (4.3.14.2)</td>
<td>39</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>User-defined duty (4.3.14.3)</td>
<td>39</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Pump curve data (4.3.19)</td>
<td>39</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Pump data (4.3.19.1)</td>
<td>40</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Control source (4.3.20)</td>
<td>40</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Monitoring functions (4.4)</td>
<td>40</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Dry-running protection (4.4.1)</td>
<td>41</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Dry-running protection with pressure/level switch (4.4.1.1)</td>
<td>41</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Dry-running protection with pressure transmitter (4.4.1.2)</td>
<td>42</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Dry-running protection with level transmitter (4.4.1.3)</td>
<td>42</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Min. pressure (4.4.2)</td>
<td>43</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Max. pressure (4.4.3)</td>
<td>43</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>External fault (4.4.4)</td>
<td>44</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Functions, CU 351 (4.5)</td>
<td>44</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Display language (4.5.1)</td>
<td>44</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Display units (4.5.2)</td>
<td>45</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Date and time (4.5.3)</td>
<td>46</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Passwords (4.5.4)</td>
<td>46</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Ethernet (4.5.5)</td>
<td>46</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>GENIbus number (4.5.6)</td>
<td>47</td>
</tr>
<tr>
<td>10.7 Settings</td>
<td>Software status (4.5.9)</td>
<td>47</td>
</tr>
</tbody>
</table>
10.3 Description of functions
The description of functions is based on the four main menus of the CU 351 control unit: **Status**, **Operation**, **Alarm** and **Settings**. The functions apply to all control variants unless otherwise stated.

10.4 Status
The first status display is shown below. This display is shown when the Hydro MPC is switched on, and it appears when the buttons of the control panel have not been touched for 15 minutes.

Fig. 8 Status menu

Description
No settings can be made in this menu.
The upper half of the display (A) shows a graphic illustration of the Hydro MPC booster set and part of the system. The selected measuring parameters are shown with sensor symbol and current value.
The current value of the control parameter, usually the discharge pressure, is shown in large print.
The lower display half (B) shows
- the latest current alarm, if any, and the fault cause together with the fault code in brackets
- system status with current operating mode and current value of the control parameter
- pump status with current operating mode and speed as percentage (%).

If a fault has occurred, the symbol 🚨 will be shown in the alarm line (C) together with the cause and alarm code, for instance overload (48).

If the fault is related to one of the pumps, the symbol 🚨 will also be shown in front of the status line (D) of the pump in question. At the same time the symbol 🚨 will be shown to the right in the top line of the display (F). As long as a fault is present, this symbol will be shown in the top line of all displays.
To open a menu line, mark the line with ✗ or ✚ and press 🚪.

The display makes it possible to open status displays showing
- current alarms
- system status
- status of each pump.

10.4.1 Current alarms (3.1)

Fig. 9 Current alarms

Description
In this display, current unreset alarms are shown.
For further information, see 10.6.2 Current alarms (3.1) and 10.6.3 Alarm log (3.2).

10.4.2 System status (1.2)

Fig. 10 System status

Description
This display shows the current operational state of the Hydro MPC booster set. It is possible to go to subdisplays showing details.
The display makes it possible to open specific displays about
- operating mode
- setpoint
- setpoint influence
- measuring values.
To open a menu line, mark the line with ✗ or ✚ and press 🚪.
10.4.3 Operating mode (1.2.1)

Fig. 11 Operating mode

Description
Here the operating mode of the Hydro MPC booster set is shown as well as from where the Hydro MPC is controlled.

Operating modes
Hydro MPC has five operating modes:

1. Normal
 The booster set adapts its performance to the requirement.
2. Max.
 The booster set has a constant high performance. Normally all pumps run at maximum speed.
3. User-defined
 The booster set has a constant performance set by the user. Usually it is a performance between Max. and Min.
4. Min.
 The booster set has a constant low performance. Normally only one pump is running at a speed of 70%.
5. Stop
 All pumps have been stopped.

The performance required in the operating modes Max., Min. and User-defined can be set in the Settings menu, see 10.7.25 Min., max. and user-defined duty (4.3.14).

The current operating mode can be controlled from four different sources: Fault, External signal, CU 351 and Bus.

Furthermore, the table shows five different operating modes: Stop, Max., User-defined, Min. and Normal. These operating modes are prioritised.

The command from the source or operating mode with the highest priority will always be in force.

Finally, it is possible to relate a source to an operating mode, for instance External signal to Max.

As several digital inputs can be set to external operation at the same time, the CU 351 has an order of priority of the external commands.

Example

The source Fault may for instance relate to the function dry-running protection. In case of water shortage, the operating mode will be Stop, as this mode has first priority. Other sources can result in other operating modes, depending on priority.

Control source
Hydro MPC can be set to remote control via an external bus (option). In this case, a setpoint and an operating mode must be set via the bus.

In the Settings menu it is possible to select whether the CU 351 or the external bus is the control source.

The status of this setting is shown in the display Operating mode.

10.4.4 Setpoint (1.2.2)

Fig. 12 Setpoint

Description
This display shows the selected setpoint and whether it comes from the CU 351 or an external bus.

The display also shows all seven possible setpoints from CU 351 (for closed- and open-loop control). At the same time, the selected setpoint is shown.

As it is a status display, no settings can be made.

Setpoints can be changed in the Operation menu.
10.4.5 Setpoint influence (1.2.3)

Fig. 13 Setpoint influence

Description
The selected setpoint can be influenced by parameters. The parameters, shown as percentage from 0 to 100%, can only reduce the setpoint, as the influence is multiplied with the selected setpoint:

\[\text{Setpoint}_{\text{Current}} = \text{Setpoint}_{\text{Select}} \times \text{Influence}(1) \times \text{Influence}(2) \times \ldots \]

The display shows the parameters influencing the selected setpoint and the percentage of influence. Finally, the resulting current setpoint is shown.

10.4.6 Measured values (1.2.4)

Fig. 14 Measured values

Description
This display gives a general status of all measured and calculated parameters.

Note
The lines Power consumption and Energy consumption are only shown in Hydro MPC-E booster sets.

10.4.7 Pump status (1.3 to 1.8)

Fig. 15 Pump status

Description
This display shows the operational state of the individual pumps. The pumps may have different operating modes:

- **Auto**
 Together with the other pumps in automatic operation the pump is controlled by the PI controller which ensures that the booster set delivers the required performance (pressure).

- **Manual**
 The pump is not controlled by the PI controller. In manual operation, the pump has one of the following operating modes:
 - **Max.**
 The pump runs at a set maximum speed.
 - **Normal**
 The pump runs at a set speed. (This operating mode can only be selected for variable-speed pumps.)
 - **Min.**
 The pump runs at a set minimum speed. (This operating mode can only be selected for variable-speed pumps.)
 - **Stop**
 The pump has been forced to stop.

Besides information about the operating mode, it is possible to read various parameters in the status display, such as:

- speed (only 0 or 100% are shown for mains-operated pumps)
- power consumption (only CR(I)E pumps)
- energy consumption (only CR(I)E pumps)
- operating hours.

10.5 Operation

In this menu, the most basic parameters can be set, such as setpoint, operating mode, control mode and forced control of pumps.
10.5.1 Operation (2)

Description
The column shows the setting range. In closed-loop control it corresponds to the range of the primary sensor, here 0-16 bar. In open-loop control the setting range is 0-100%.

At the left hand of the column the primary setpoint 1 (A) is shown, i.e. the value set in the display. At the right hand of the column the current setpoint (B) is shown, i.e. the setpoint acting as reference for the PI controller. If no kind of setpoint influence has been selected, the two values are identical. The current measured value (discharge pressure) is shown as the grey part of the column (C). See 10.4.5 Setpoint influence (1.2.3), 10.7.5 Setpoint influence (4.1.3) and 10.7.6 External setpoint influence (4.1.3.1).

Below the top part is a menu line for setting of setpoint 1.

The bottom half of the display makes it possible to go to displays where operating and control modes as well as forced control of individual pumps can be selected.

Setting range
Setpoint:

<table>
<thead>
<tr>
<th>Closed-loop control</th>
<th>Measuring range of the primary sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-loop control</td>
<td>0-100%</td>
</tr>
</tbody>
</table>

Setting via control panel
Setpoint:
1. Mark the Operation menu with 🔄.
2. Mark Setpoint 1 with ✔️ or 🔴. Set the value with 🔄 or 📋.
3. Save with ✅.

System operating mode, control mode as well as forced control of individual pumps:
1. Mark the Operation menu with 🔄.
2. Mark the setting, for instance System operating mode, with ✔️ or 🔴.
3. Go to a new display with 📋.

Factory setting
The setpoint is a value suitable for the Hydro MPC booster set in question. Typically 50% of the maximum head of the pumps. The factory setting may have been changed in the start-up menu.

10.5.2 System operating mode (2.1)

Description
Hydro MPC can be set to five different operating modes. Normal is the typical setting. See 10.4.3 Operating mode (1.2.1).

The performance of the operating modes Max., Min. and User-defined can be set in the Settings menu.

In the display shown, it is possible to go directly to the Settings menu in order to set the pump performance.

Setting range
It is possible to select the operating modes Normal, Max., Min. and User-defined as well as Stop.

Setting via control panel
1. Mark the Operation menu with 🔄.
2. Mark System operating mode with ✔️ or 🔴 and press 📋.
3. Select the desired operating mode by marking one of the lines with check boxes with ✔️ or 🔴 and press 📋.
4. In order to set the performance in min., max. or user-defined duty, mark the desired line at the bottom of the display and press 📋.

See 10.7.25 Min., max. and user-defined duty (4.3.14).

Factory setting
Normal.

10.5.3 Control mode (2.2)

Description
The column shows the performance of the primary sensor, here 0-16 bar. In closed-loop control it corresponds to the range of the primary sensor.

Open-loop control: 0-100%

Set point range
Set point:

<table>
<thead>
<tr>
<th>Closed-loop control</th>
<th>Measuring range of the primary sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-loop control</td>
<td>0-100%</td>
</tr>
</tbody>
</table>

Setting via control panel
Set point:
1. Mark the Operation menu with 🔄.
2. Mark the setting, for instance Control mode, with ✔️ or 🔴.
3. Go to a new display with 📋.
Description
There are two control modes, namely closed and open loop. The typical control mode is closed loop where the built-in PI controller ensures that the booster set delivers the discharge pressure required (setpoint). In open-loop control, the pumps run at a fixed speed. **Examples:**
1. The performance is based on the setpoint set in CU 351, see example 1.
2. The performance is controlled by a building management system connected to the Hydro MPC, see example 2.
 Open-loop control is used when the booster set is controlled by an external controller which controls the performance of the Hydro MPC booster set via an external signal. In such cases the Hydro MPC is like an actuator.
3. The speed of the pumps is determined by the signal from a transmitter monitoring the level in a tank, see example 3.

Example 1

![Example 1 diagram]

Example 2

![Example 2 diagram]

Example 3

![Example 3 diagram]

Setting range
There are two control modes: closed and open loop.

Setting via control panel
1. Mark the **Operation** menu with
2. Mark **Control mode** with or and press .
3. Select the desired control mode with or and press .

Factory setting
Closed-loop control.

10.5.4 Setting of setpoints (2.3)

<table>
<thead>
<tr>
<th>Status</th>
<th>Setpoint 1</th>
<th>Setpoint 2</th>
<th>Setpoint 3</th>
<th>Setpoint 4</th>
<th>Setpoint 5</th>
<th>Setpoint 6</th>
<th>Setpoint 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed loop</td>
<td>3.0 bar</td>
</tr>
<tr>
<td>Open loop</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
</tbody>
</table>

Description
In addition to the primary setpoint 1 (shown in display 2), six other setpoints can be set for closed-loop control. It is furthermore possible to set seven setpoints for open-loop control.

As described in **10.7.3 Selection of alternative setpoints (4.1.2)** and **10.7.4 Setting of alternative setpoints 2 to 7 (4.1.2.1 to 4.1.2.7)**, it is possible to activate one of the alternative setpoints by means of external contacts.
Setting range
The setting range of setpoints for closed-loop control depends on the range of the primary sensor, see 10.7.8 Primary sensor (4.1.4).
Open-loop control: 0-100%.

Setting via control panel
1. Mark the Operation menu with
2. Mark Setpoints with or and press
3. Select the setpoint with or
4. Set the setpoint with or and press

Factory setting
Setpoint 1 for closed-loop control is a value suitable for the Hydro MPC in question.
The other setpoints for closed-loop control are 3 bar.
All setpoints for open-loop control are 70%.

10.5.5 Forced control (2.4) + (2.4.1 to 2.4.6)

Description
It is possible to change the operating mode from automatic operation to one of the manual operating modes.
Auto
The pumps are controlled by the PI controller, ensuring that the booster set delivers the required performance (pressure).
Manual
The pump is not controlled by the PI controller, but set to one of the following manual operating modes:
• Max.
The pump runs at a set maximum speed.
• Normal
The pump runs at a set speed. (This operating mode can only be selected for variable-speed pumps.)
• Min.
The pump runs at a set minimum speed. (This operating mode can only be selected for variable-speed pumps.)
• Stop
The pump has been forced to stop.
Pumps in manual operation are not part of the normal pump cascade and speed control. The manual pumps are a "disturbance" of the normal control of Hydro MPC.
If one or more pumps are in manual operation, Hydro MPC may not be able to deliver the set performance.
There are two displays for the function. In the first display the pump to be set is selected, and in the next display the operating mode is selected.

Setting range
All pumps can be selected.

Setting via control panel
1. Mark the Operation menu with
2. Mark Individual pump control with or and press
3. Select the pump with or and press

10.5.6 Setting of individual operating mode (2.4.1 to 2.4.6)

Description
This display is shown for the individual pumps and makes it possible to set an operating mode.

Setting range
It is possible to select Auto or Manual as well as the operating mode of the pump for manual operation - Normal, Max., Min. or Stop. For mains-operated pumps only Max. or Stop can be selected.

Setting via control panel
1. Mark the Operation menu with
2. Mark Individual pump control with or and press
3. Select the pump with or and press
4. Mark Auto or Manual with or and press
5. Manual: Select the operating mode with or and press
6. Normal: Mark Setpoint with or .
 Set the speed of the variable-speed pump with or and press

Factory setting
Auto.
10.6 Alarm

The Alarm menu gives an overview of current alarms and warnings.

In this menu it is possible to reset alarms and to see the alarm log.

10.6.1 Alarm (3)

<table>
<thead>
<tr>
<th>Status</th>
<th>Operation</th>
<th>Alarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further information about alarms, go to:
- Current alarms
- Alarm log

Description

A fault in the Hydro MPC booster set or one of the components monitored can cause an alarm (🚫) or a warning (⚠️). Besides the fault signal via the fault signal relay and the red indicator light on CU 351, an alarm can also cause a change of operating mode, for instance from Normal to Stop. A warning only causes a fault indication.

The table shows the possible causes of fault together with an alarm code number, and whether they result in an alarm or a warning. It also shows to what operating mode the booster set changes in case of alarm, and whether restart of the booster set and reset of the alarm is manual or automatic.

The table also shows that the reaction to some of the fault causes mentioned can be set in the Settings menu. See 10.7.32 Monitoring functions (4.4) to 10.7.39 External fault (4.4.4).

<table>
<thead>
<tr>
<th>Fault</th>
<th>Warning(⚠️)/alarm(🚫)</th>
<th>Change of operating mode to</th>
<th>Reset of alarm</th>
<th>Restart</th>
<th>Set in the Settings menu</th>
<th>Alarm code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water shortage, level 1*</td>
<td>⚫️ Auto</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water shortage, level 2*</td>
<td>⚫️ Stop</td>
<td>Man/auto</td>
<td>X</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. pressure</td>
<td>⚫️ Stop</td>
<td>Auto</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. pressure</td>
<td>⚫️ Stop</td>
<td>Man</td>
<td>X</td>
<td>211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm, all pumps</td>
<td>⚫️ Stop</td>
<td>Auto</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External fault</td>
<td>⚫️ Stop</td>
<td>Auto</td>
<td>X</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissimilar sensor signals</td>
<td>⚫️ Stop</td>
<td>Man</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary sensor (without redundant primary sensor)</td>
<td>⚫️ Stop</td>
<td>Auto</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault, sensor</td>
<td>⚫️ Auto</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication fault</td>
<td>⚫️ Auto</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase failure</td>
<td>⚫️ Auto</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage, pump</td>
<td>⚫️ Auto</td>
<td>7,40,42,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage, pump</td>
<td>⚫️ Auto</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overload, pump</td>
<td>⚫️ Auto</td>
<td>48,50,51,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overtemperature, pump</td>
<td>⚫️ Auto</td>
<td>65,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other fault, pump</td>
<td>⚫️ Auto</td>
<td>76,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal fault, CU 351</td>
<td>⚫️ Auto</td>
<td>72,83,157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal fault, IO 351</td>
<td>⚫️ Stop</td>
<td>Auto</td>
<td>72,83,157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFD, not ready</td>
<td>⚫️ Auto</td>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault, Ethernet</td>
<td>⚫️ Auto</td>
<td>231,232,233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Level 1 is the tank level where a warning ⚫️ is indicated in case of water shortage. Level 2 is the tank level where an alarm ⚫️ is indicated and the pumps stop in case of water shortage. For further information, see 10.7.34 Dry-running protection with pressure/level switch (4.4.1.1) and 10.7.36 Dry-running protection with level transmitter (4.4.3).
<table>
<thead>
<tr>
<th>MPC alarm indication</th>
<th>Alarm code</th>
<th>Associated device and device no.</th>
<th>Description/cause</th>
<th>Remedy</th>
<th>Reset type</th>
<th>Alarm/warning Action type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Water shortage, level 1</td>
<td>206</td>
<td></td>
<td>a) The pre-pressure (or the level in the feed tank) is below its programmable warning limit.</td>
<td>Auto</td>
<td>Warning</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>
| 2. Water shortage, level 2 | 214 | | a) The pre-pressure (or the level in the feed tank) is below its programmable warning limit.
 b) The pre-pressure switch detect water shortage. | 1. Check the actual and the corresponding settings.
 2. Check the sensor/switch, wiring and input according to the wiring diagram. | Auto/Manual | Alarm/Stop |
| 3. Discharge pressure high | 210 | System | a) The system pressure is above the programmable high-pressure alarm limit. | 3. Check the sensor/switch. | Auto/Manual | Warning/Unchanged |
| 4. Discharge pressure low | 211 | | a) The system pressure is below the programmable low-pressure alarm limit. | Troubleshoot according to the alarm message/code:
 1. System
 2. Pumps installed Use fault fault finding for the pump. | Auto/Manual | Alarm/Warning Stop/Unchanged |
| 5. All pumps in alarm | 203 | | a) All pumps, set to Auto, is stopped on account of pump alarm
 b) Pumps are not indicating alarm | 1. Check the external wires eg. connection, polarisation. | Auto | Alarm Stop |
 2. Check the digital input according to the wiring diagram | Auto/Manual | Alarm/Warning Stop/Unchanged |
| 7. Inconsistency between sensors | 204 | Primary sensor and/or redundant sensor | a) Primary feedback sensor value (pressure) is inconsistent with redundant feedback sensor value. | 1. Check the wiring and input according to the wiring diagram.
 2. Check the sensor output according to the measured value. | Auto | Warning/Unchanged |
| 8. Primary sensor | 089 | Primary sensor | a) A fault in the sensor assigned to the feedback control is detected. | 1. Check the wiring and input according to the wiring diagram.
 2. Check the sensor output according to the measured value. | Auto | Alarm Stop |
| 9. Sensor fault | 088 | CU 351 IO 351 as IO module | a) The signal (ex. 4-20 mA) from one of the analog sensors is outside the selected signal range. | 1. Check the wiring and input according to the wiring diagram.
 2. Check the sensor output according to the measured value | Auto | Warning Unchanged |
<table>
<thead>
<tr>
<th>MPC alarm indication "Protocol description"</th>
<th>Alarm code</th>
<th>Associated device and device no.</th>
<th>Description/cause</th>
<th>Remedy</th>
<th>Reset type¹</th>
<th>Alarm/warning Action type²</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. CU 351 internal fault</td>
<td>157</td>
<td></td>
<td>a) The real-time clock in CU 351 is out of order.</td>
<td>Replace the CU 351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Real time clock out of order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Ethernet fault</td>
<td>231</td>
<td>CU 351</td>
<td>a) No address from DHCP server</td>
<td>1. Communication error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Ethernet: No address from DHCP server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Ethernet fault</td>
<td>232</td>
<td></td>
<td>a) Auto-disabled due to misuse</td>
<td>2. Please contact the system integrator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Ethernet: Auto disabled due to misuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. FLASH parameter verification error</td>
<td>083</td>
<td></td>
<td>a) Verification error in CU 351 FLASH memory</td>
<td>Replace the CU 351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*FLASH parameter verification error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. IO 351 internal fault</td>
<td>080</td>
<td>IO 351</td>
<td>a) IO 351 pump module hardware fault</td>
<td>See current alarms and identify the faulty IO 351 module from the alarm message and replace the module.</td>
<td>Auto</td>
<td>Warning Unchanged</td>
</tr>
<tr>
<td>*Hardware fault type 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. VFD not ready</td>
<td>213</td>
<td>Pump 1-6 CU 351</td>
<td>a) The VFD signal relay do not release the VFD for operation</td>
<td>1. Check for VFD alarm 2. Check the wiring and input according to the wiring diagram.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*VFD not ready</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Communication fault</td>
<td>010</td>
<td>Pump 1-6 IO 351</td>
<td>a) No GeniBus communication with a device connected to CU 351</td>
<td>See actual alarms and identify the faulty device from the alarm message. 1. Check power supply 2. Check GeniBus cable connection 3. Check, with R100, that the device GeniBus no. is correct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Pump communication fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Device alarms</td>
<td>From device</td>
<td>Pump 1-6</td>
<td>a) The device is in alarm</td>
<td>See actual alarms and identify the faulty device from the alarm message. 1. Fault find according to the service instruction for the device.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Reset type is either fixed as "Auto acknowledge" (Auto) or can be programmed to be Auto or manualacknowledge (Auto/Man)*.

2) Programmable action types:
 - Go to operating mode "Stop" (no delay (<0.5 s) between pump disconnections).
 - Go to operating mode "Min".
 - Go to operating mode "User-defined".
 - Go to operating mode "Max".
 - Set pumps in source mode "Local". - No action (warning only)
10.6.2 Current alarms (3.1)

Description

This submenu shows:
- warnings \(\text{\ding{42}}\) caused by faults that still exist.
- alarms \(\text{\ding{41}}\) caused by faults that still exist.
- alarms \(\text{\ding{41}}\) caused by faults that have disappeared, but the alarm requires manual reset.

All warnings and alarms with automatic reset are automatically removed from the menu and transferred to the alarm log when the fault has disappeared.

Alarms requiring manual reset are reset in this display by pressing \(\text{\ding{41}}\). They are then transferred to the alarm log. An alarm cannot be reset until the fault has disappeared.

For every warning or alarm the following is shown:
- Whether it is a warning \(\text{\ding{42}}\) or an alarm \(\text{\ding{41}}\).
- Where the fault occurred: System, Pump 1, Pump 2, etc.
- In case of input-related faults the input is shown.
- What the cause of the fault is, and the alarm code in brackets: Water shortage, level 1 (206), max. pressure (210), etc.
- When the fault occurred: Date and time.
- When the fault disappeared: Date and time. If the fault still exists, date and time are shown as --....--.

The latest warning/alarm is shown at the top of the display.

10.6.3 Alarm log (3.2)

The alarm log can store up to 24 warnings and alarms.

Setting via control panel

To open the alarm log, proceed as follows:
1. Mark the **Alarm** menu with \(\text{\ding{41}}\).
2. Mark **Alarm log** with \(\text{\ding{41}}\) or \(\text{\ding{42}}\) and press \(\text{\ding{41}}\).
3. Scroll up and down in the list with \(\text{\ding{41}}\) or \(\text{\ding{42}}\) if it takes up more than one page.

10.7 Settings

Description

Here warnings and alarms are shown.

For every warning or alarm the following is shown:
- Whether it is a warning \(\text{\ding{42}}\) or an alarm \(\text{\ding{41}}\).
- Where the fault occurred: System, Pump 1, Pump 2, etc.
- In case of input-related faults the input is shown.
- What the cause of the fault is, and the alarm code in brackets: Water shortage, level 1 (206), max. pressure (210), etc.
- When the fault occurred: Date and time.
- When the fault disappeared: Date and time. If the fault still exists, date and time are shown as --....--.

The latest warning/alarm is shown at the top of the display.

Setting via control panel

To set the following functions:
- **Primary controller**
 Setting of setpoint, setpoint influence, primary sensor and redundant primary sensor.
- **Pump cascade control**
 Setting of min. time between start/stop, number of starts/hour, number of standby pumps, forced pump changeover and test run.
- **Secondary control**
 Setting of stop function, digital and analog inputs, min., max. and user-defined duty, pump curve data and control source.
- **Monitoring**
 Setting of dry-running protection, min. and max. pressure and external fault.
- **CU 351**
 Selection of service language, display language, units and date and time, setting of passwords, Ethernet connection and GENibus number.

Usually, all these functions are set correctly when the Hydro MPC is switched on.

If it is necessary to make settings in this menu, the functionality is to be expanded with instance alternative setpoints, setpoint influence or redundant primary sensor, or if the controller settings are to be adjusted.
10.7.1 Primary controller (4.1)

Fig. 26 Primary controller

Description
In this menu section it is possible to set the functions related to the primary controller. It is only necessary to make setting in this menu if the functionality is to be expanded with for instance alternative setpoints, setpoint influence or redundant primary sensor. The following menus can be selected:
- PI controller
- Setpoints
- Setpoint influence
- Primary sensor
- Redundant primary sensor.

10.7.2 PI controller (4.1.1)

Fig. 27 PI controller

Description
Hydro MPC includes a standard PI controller which ensures that the pressure is stable and corresponds to the setpoint. It is possible to adjust the PI controller if a faster or slower reaction to changes of consumption is required.

A faster reaction is obtained if K_p is increased and T_i is reduced.
A slower reaction is obtained if K_p is reduced and T_i is increased.

Setting range
- Integral time T_i: 0.1 to 3600 seconds.

Note: For inverse control, set K_p to a negative value.

Factory setting
- K_p: 0.5
- T_i: 1 second

10.7.3 Selection of alternative setpoints (4.1.2)

Fig. 28 Selection of alternative setpoints

Description
This function makes it possible to select up to six setpoints (no. 2 to 7) as alternatives to the primary setpoint (no. 1). The primary setpoint (no. 1) is set in display 2 in the Operation menu. Every alternative setpoint can be addressed manually to a separate digital input (DI). When the contact of the input is closed, the alternative setpoint applies.

If more than one alternative setpoint has been selected, and they are activated at the same time, the CU 351 selects the setpoint with the lowest number.

Setting range
- Six setpoints, no. 2 to 7.

Factory setting
No alternative setpoints have been selected.

10.7.4 Setting of alternative setpoints 2 to 7 (4.1.2.1 to 4.1.2.6)
4.1.2.7) Setting of alternative setpoints 2 to 7

For each alternative setpoint, select the digital input to activate the setpoint.

It is possible to set a setpoint for closed loop and for open loop.

Setting via control panel

1. Mark the **Settings** menu with .
2. Mark **Primary controller** with or and press .
3. Mark **Alternative setpoint** with or and press .
4. Select the alternative setpoint with or and press .
5. Mark **Go to setting of digital input** with or and press .

 Now the display **Overview of digital inputs (4.3.7)** appears. Set the input and return with .
6. Mark the menu line of the setpoint (closed or open loop) with or .
7. Set the required setpoint with or and save with .

 Set both setpoints if Hydro MPC is to be controlled both in open and closed loop.

Factory setting

No alternative setpoints have been set.

10.7.5 Setpoint influence (4.1.3)

The parameters which influence the performance of the booster set are shown as a percentage from 0 to 100%. They can only reduce the setpoint, as the influence is multiplied with the setpoint:

\[
\text{Setpoint}_{\text{Current}} = \text{Setpoint}_{\text{Select}} \times \text{Influence(1)} \times \text{Influence(2)}
\]

The influence values can be set individually.

Factory setting

Setpoint influence is not activated.

10.7.6 External setpoint influence (4.1.3.1)

Description

This function makes it possible to make an external analog signal influence the setpoint. The analog signal may be a 0-100% signal from another control unit, a signal transmitter such as a flow sensor, or a parameter in the system.

The function is linked to a selected analog input (AI), and the relation between the measuring parameter and the desired influence in percentage is described in a table with maximum eight points.

Setting range

The following parameters can be selected:

- Not used
- 0-100% signal
- Inlet pressure
- Discharge pressure
- External pressure
- Diff. pressure, pump
- Flow rate
- Tank level, discharge side
- Tank level, suction side.

Setting via control panel

1. Mark the **Settings** menu with .
2. Mark **Primary controller** with or and press .
3. Mark **Setpoint influence** with or and press .
4. Mark **External setpoint influence** with or and press .
5. Mark the parameter which is to influence the setpoint with or and press .
6. Mark **Go to setting of analog input** with or and press .

 Now the display **Overview of analog inputs (4.3.8)** appears. Select the analog input (AI) and set the measuring parameter.
7. Mark Setting of influence function with \(v\) or \(\cdot\) and press \(\lhd\).

Factory setting
External setpoint influence is not activated.

10.7.7 Influence function (4.1.3.1.1)

![Fig. 32](image)

Setting of influence function

Description
In this menu you select the relation between the measuring parameter which is to influence the setpoint and the desired influence as a percentage.

The relation is set by entering values in a table with maximum eight points by means of the control panel.

Example with four points:

<table>
<thead>
<tr>
<th>Point</th>
<th>External input value</th>
<th>Reduce setpoint to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

![Fig. 33](image)

Relation between setpoint influence and flow rate

The control unit of the Hydro MPC draws straight lines between the points. A horizontal line is drawn from the minimum value of the relevant sensor (0 gpm in the example) to the first point. This is also the case from the last point to the sensor's maximum value (example 50 gpm).

Setting range
Two to eight points can be selected. Each point contains the relation between the value of the parameter which is to influence the setpoint and the influence of the value.

Setting via control panel
1. Mark the Settings menu with \(v\).
2. Mark Primary controller with \(v\) or \(\cdot\) and press \(\lhd\).
3. Mark Setpoint influence with \(v\) or \(\cdot\) and press \(\lhd\).
4. Mark External setpoint influence with \(v\) or \(\cdot\) and press \(\lhd\).
5. Mark Set the influence function with \(v\) or \(\cdot\) and press \(\lhd\).
6. Mark the menu line for number of points with \(v\) or \(\cdot\) and press \(\lhd\).
7. Select the required number of points with \(v\) or \(\cdot\) and save with \(\lhd\).
8. Mark External input value (point 1) with \(v\) or \(\cdot\).
9. Set the value of the external input value with \(v\) or \(\cdot\) and save with \(\lhd\).
10. Mark Reduce setpoint to (point 1) with \(v\) or \(\cdot\).
11. Set the value in per cent with \(v\) or \(\cdot\) and save with \(\lhd\).
12. Repeat points 5 to 11 for all desired parameters.

Factory setting
External setpoint influence is not activated.

10.7.8 Primary sensor (4.1.4)

![Fig. 34](image)

Primary sensor

Description
In this display, select the control parameter of Hydro MPC and the sensor to measure the value.

Usually the control parameter is the discharge pressure which is measured by a sensor fitted on the discharge manifold and connected to analog input AI1 of CU 351.

Alternative control parameters are
- External pressure
 Select this parameter if the pump performance is to be controlled according to a pressure measured outside the booster set.
- Flow rate
 Select this parameter if Hydro MPC is to deliver a constant flow rate.

If one of the alternative control parameters is selected, the sensor must be connected to AI3 (CU 351) which is then set to external pressure or flow rate as parameter.

Setting range
- Not used
- Discharge pressure (factory setting)
- External pressure
- Flow rate

From factory the discharge pressure sensor is connected to AI1 (CU 351). If one of the two other parameters is selected, the sensor in question must be connected to AI3 (CU 351) which is then set to function as the primary sensor.

Setting via control panel
1. Mark the Settings menu with \(v\).
2. Mark Primary controller with \(v\) or \(\cdot\) and press \(\lhd\).
3. Mark Primary sensor with \(v\) or \(\cdot\) and press \(\lhd\).
4. Mark **Go to setting of analog input** with ✑ or ✑ and press ✑.
 Now the display **Overview of analog inputs (4.3.8)** appears. Select the analog input (AI) for the primary sensor and set the parameters for this sensor. Return to display **Primary sensor (4.1.4)** with ✑.

5. Select the control parameter for the primary sensor with ✑ or ✑ and press ✑.

 Note: If the primary parameter is discharge pressure, AI1 (CU 351) must be set to this parameter.

 If the primary parameter is external pressure or flow rate, AI3 (CU 351) must be set to this parameter.

Factory setting
The primary parameter is discharge pressure. The sensor is connected to AI1 (CU 351).

10.7.9 Redundant primary sensor (4.1.5)

Description
A redundant primary sensor functions as a backup sensor for the primary sensor. It measures the control parameter which in this case is the discharge pressure.

The CU 351 usually controls on the basis of the primary sensor connected to analog input AI1 (CU 351). If the primary sensor falls out of its sensor range, the redundant primary sensor connected to analog input AI3 (CU 351) will take over and then report to the PI controller. In this situation a warning is indicated.

If both the primary sensor and the redundant primary sensor fall out of their sensor range, all pumps will be stopped.

The CU 351 also indicates warning if the output signals from the primary sensor and the redundant primary sensor differ more than ±10% or more than 4% of full scale of the primary sensor, but the Hydro MPC will still be controlled by the primary sensor.

Note: The redundant primary sensor must be of the same type and size as the primary sensor and be mounted at the same position in Hydro MPC.

Setting range
The analog input AI3 (CU 351) can be set to this function.

Setting via control panel
1. Mark the **Settings** menu with ✑.
2. Mark **Primary controller** with ✑ or ✑ and press ✑.
3. Mark **Redundant primary sensor** with ✑ or ✑ and press ✑.

10.7.10 Pump cascade control (4.2)

Fig. 36 Pump cascade control

In this menu section it is possible to set the functions connected to pump cascade control.

It is only necessary to make setting in this menu if the functionality is to be expanded with for instance min. time between start/stop, permissible number of starts/hour and standby pumps.

The following menus can be selected:
- Min. time between start/stop
- Max. number of starts/hour
- Standby pumps
- Forced pump changeover
- Pump test run.

Fig. 37 Min. time between start/stop

Factory setting
Usually, no redundant primary sensor is selected from factory. The function can, however, be selected as factory setting if the redundant primary sensor is ordered as option.

10.7.11 Min. time between start/stop (4.2.1)

Fig. 37 Min. time between start/stop

Set the min. time between start/stop and max. number of starts/hour. The Hydro MPC will then control the pump cascade.

Factory setting
Note: The redundant primary sensor must be of the same type and size as the primary sensor and be mounted at the same position in Hydro MPC.
Description
This function ensures a delay between the starting/stopping of one pump and the starting/stopping of another pump.
The purpose of the function is to prevent constant starting and stopping of pumps.

Setting range
From 1 to 300 seconds.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Pump cascade control with or and press .
3. Mark Min. time between start/stop with or and press .
4. Mark Min. time between start/stop with or and press .
5. Set the required minimum time with or and save with .

Factory setting
The minimum time between start/stop of pumps has been set to:

Hydro MPC-E and -EF: 1 second ≤ 15 HP 240 sec.
Other variants: > 20 HP 360 sec.

10.7.12 Max. number of starts/hour (4.2.1)

Setting range
1 to 253 starts per hour.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Pump cascade control with or and press .
3. Mark Max. number of starts/hour with or and press .
4. Mark Max. number of starts/hour with or and press .
5. Set the permissible number of starts per hour with or and save with .

Factory setting
Hydro MPC-E and -EF: 200 starts per hour ≤15 HP.
Other variants: 100 starts per hour > 20 HP

10.7.13 Standby pumps (4.2.3)

Description
This function makes it possible to limit the maximum performance of the Hydro MPC, by selecting one or more pumps as standby pumps.

If a three-pump system has one standby pump, maximum two pumps are allowed to be in operation at a time.

If one of the two pumps in operation has a fault and is switched off, the standby pump will be started. The performance of the booster set is thus not reduced.

The status as standby pump alternates between all pumps.

Setting range
The number of possible standby pumps in a Hydro MPC booster set is equal to the total number of pumps in the system minus 1.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Pump cascade control with or and press .
3. Mark Standby pumps with or and press .
4. Select the number of standby pumps with or and save with .

Factory setting
The number of standby pumps is set to 0, i.e. function is deactivated.
10.7.14 Forced pump changeover (4.2.4)

Description
This function ensures that the pumps run for the same number of operating hours. In certain applications the requirement remains constant for long periods and does not require all pumps to run. In such situations, pump changeover does not take place naturally, and forced pump changeover may thus be required.

Once every 24 hours the controller checks if any pump running has a larger number of operating hours than pumps that are stopped. If this is the case, the pump is stopped and replaced by a pump with a lower number of operating hours.

Setting range
The function can be activated/deactivated. The hour of the day at which the changeover is to take place can be set.

Setting via control panel
1. Mark the **Settings** menu with
2. Mark **Pump cascade control** with or and press .
3. Mark **Forced pump changeover** with or and press .
4. Mark Activated with or and press . The check mark in the right box shows that the function is active.
5. Mark **Time for changeover** with and press .
6. Set the time with or and save with .

Factory setting
The function is activated. The time is set to 03:00.

10.7.15 Test run (4.2.5)

Description
This function is primarily used in situations where the forced pump changeover is deactivated, and/or if the Hydro MPC is set to operating mode Stop, for instance in a period when the system is not needed. In such situations, it's important to test the pumps regularly. The function ensures that

- pumps do not seize up during a long standstill due to deposits from the pumped liquid.
- the pumped liquid does not decay in the pump.
- trapped air is removed from the pump.

Each pump is connected to a counter. The pump starts automatically one by one and runs for 5 seconds.

Note: Pumps in Manual operating mode are not included in the test run. If there is an alarm, the test run will not be carried out.

Setting range
- Not used
- Once every 24 hours.
- Once every 48 hours.
- Once a week.

Setting via control panel
1. Mark the **Settings** menu with .
2. Mark **Pump cascade control** with or and press .
3. Mark **Test run** with or and press .
4. Mark the desired function with or .
5. Activate the function with .

Factory setting
Test runs are set to once a week.

10.7.16 Secondary functions (4.3)

Description
Functions that are secondary in relation to the normal operation of the Hydro MPC booster set can be set in this display. Secondary functions are functions that offer additional functionality. The display makes it possible to open specific displays regarding:

- **Stop function** (4.3.1)
- **Overview of digital inputs** (4.3.7)
- **Overview of analog inputs** (4.3.8)
- **Overview of digital outputs** (4.3.9)
- **Min., max. and user-defined duty** (4.3.14)
- **Pump curve data** (4.3.19)
- **Control source** (4.3.20).
10.7.17 Stop function (4.3.1)

Description

This function makes it possible to stop the last pump if there is no or a very small consumption. The purpose is to

- save energy
- prevent heating of shaft seal faces due to increased mechanical friction as a result of reduced cooling by the pumped liquid
- prevent heating of the pumped liquid.

The description of the stop function applies to all Hydro MPC booster sets with variable-speed pumps. Hydro MPC-S will have on/off control of all pumps as described in 3. Product description.

If the booster set is not connected to a flowmeter or flow switch, the stop function will use the estimating function.

If the detection of low flow rate is based on flow estimation, a diaphragm tank of a certain size and with a certain precharge pressure is required. The tank size and precharge pressure must be as follows:

Recommended minimum diaphragm tank size:

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Recommended diaphragm tank size [gallons]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR(E) 3</td>
<td>4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 20</td>
</tr>
<tr>
<td>CR(E) 5</td>
<td>4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 34</td>
</tr>
<tr>
<td>CR(E) 10</td>
<td>10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 62</td>
</tr>
<tr>
<td>CR(E) 15</td>
<td>34 34 34 34 34 34 34 34 34 211</td>
</tr>
<tr>
<td>CR(E) 20</td>
<td>34 34 34 34 34 34 34 34 34 211</td>
</tr>
<tr>
<td>CR(E) 32</td>
<td>44 44 44 44 44 44 44 44 44 317</td>
</tr>
<tr>
<td>CR(E) 45</td>
<td>86 86 86 86 86 86 86 86 86 528</td>
</tr>
<tr>
<td>CR(E) 64</td>
<td>132 132 132 132 132 132 132 132 132 1056</td>
</tr>
<tr>
<td>CR(E) 90</td>
<td>- - - 132 132 132 132 132 132 1056</td>
</tr>
</tbody>
</table>

Precharge pressure:

Hydro MPC-E, -ED, -ES, -EF, -EDF and -F: 0.7 x setpoint.

Hydro MPC-S: 0.9 x setpoint.

During each flow estimation (every 2 minutes) the estimating function will disturb the discharge pressure by ±10%. If this disturbance is not acceptable, the stop function must be based on direct flow measurement with a flowmeter or flow switch.

- The flow switch is set in the menu Go to setting of digital input, see 10.7.18 Overview of digital inputs (4.3.7) and 10.7.19 Functions of digital inputs (4.3.7.1 to 4.3.7.12).
- Flowmeters are set in the menu Go to setting of analog input, see 10.7.20 Overview of analog inputs (4.3.8), 10.7.21 Setting of analog inputs (4.3.8.1 to 4.3.8.7) and 10.7.22 Functions of analog inputs (4.3.8.1.1 to 4.3.8.7.1).

When the setting has been made, Qmin can be set, i.e. the flow rate at which the booster set changes to on/off control of the last duty pump.

If both a flowmeter and a flow switch are connected, the changeover to on/off control is determined by the unit first indicating low flow rate.

Setting range

- On/off control: 5 to 30%
- Min. flow rate: 2 to 50% of the nominal flow rate (Qnom) of one of the pumps. (Can only be set if direct flow measurement by means of flowmeter has been selected.)

Setting via control panel

System without flow switch or flowmeter

1. Mark the Settings menu with .
2. Mark Secondary functions with or and press .
3. Mark Stop function with or and press .
4. Mark Active with or and press .
 The activation is indicated by a check mark in the box.
5. Mark On/off band with or .
6. Set the on/off band with or and save with .

![Fig. 43 Stop function](image)

Fig. 43 Stop function

When the stop function is activated, the operation of Hydro MPC is continuously monitored to detect low flow rate. When the CU 351 detects no or a very low flow rate (Q < Qmin), it changes to on/off control of the last duty pump.

Before stopping, the pump increases the pressure to a value corresponding to Hsetpoint + 0.5 x on/off band. The pump is restarted when the pressure is Hsetpoint – 0.5 x on/off band.

As long as the flow rate is lower than Qmin, the pump runs on/off. If the flow rate is increased to above Qmin, the pump returns to normal operation, Hsetpoint.

Hsetpoint is equal to the current setpoint, see section 10.4.4.

Detection of low flow rate

Low flow rate can be detected by means of

- direct flow measurement with a flowmeter or flow switch
- estimation of flow rate by measurement of current pressure and speed.
System with flow switch:
Make the following additional settings:
1. Mark Go to setting of digital input with \(\text{or } \) and press \(\text{. Now the display Overview of digital inputs (4.3.7) appears.} \)
2. Select the digital input where the flow switch is connected with \(\text{or } \) and press \(\text{.} \)
3. Mark Flow switch with \(\text{or } \), press \(\text{and return with } \text{.} \)

Note: An open contact indicates low flow.

System with flowmeter:
Make the following additional settings:
1. Mark Go to setting of analog input with \(\text{or } \) and press \(\text{. Now the display Overview of analog inputs (4.3.8) appears.} \)
2. Select the analog input where the flowmeter is connected and set up the input for the flowmeter. Return to Stop function with \(\text{.} \)
3. Mark Min. flow rate with \(\text{or } \).
4. Set the value with \(\text{or } \) and press \(\text{.} \)

Factory setting
On/off band: 20% for MPC-S & 10% for all other types
Min. flow rate: 10% of the nominal flow rate of one pump

10.7.18 Overview of digital inputs (4.3.7)

<table>
<thead>
<tr>
<th>Status</th>
<th>Function</th>
<th>Alarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital inputs and related functions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI1 [IO 351-41], [10]</td>
<td>Internal start/stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI2 [IO 351], [12]</td>
<td>Dry-running protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI3 [IO 351], [14]</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 45 Overview of digital inputs

Description
In this menu the digital inputs of the CU 351 can be set. Each input, except DI1 on CU 351, can be activated and related to a certain function.

As standard, the Hydro MPC has three digital inputs. If the Hydro MPC incorporates an IO 351B module (option), the number of digital inputs is 12.

In the display, all digital inputs are shown so that their physical position in the Hydro MPC can be identified.

Example
DI1 (IO 351-41), [10]:

DI1: Digital input no. 1.
(IO 351-41): IO 351, GENIbus number 41
[10]: Terminal no. 10

For further information on the connection of various digital inputs, see the wiring diagram supplied with the control panel.

Setting range
The digital input to be set is selected in display Overview of digital inputs (4.3.7).

Note: DI1 (CU 351) cannot be selected.

Setting via control panel
1. Mark the Settings menu with \(\text{.} \)
2. Mark Secondary functions with \(\text{or } \) and press \(\text{.} \)
3. Mark Digital inputs \(\text{or } \) and press \(\text{.} \)
4. Select the digital input with \(\text{or } \) and press \(\text{.} \)

10.7.19 Functions of digital inputs (4.3.7.1 to 4.3.7.12)

Fig. 46 Functions of digital inputs

Description
In the displays 4.3.7.1 to 4.3.7.12, a function can be related to the digital inputs.

Setting range
It is possible to select one function in each display:

<table>
<thead>
<tr>
<th>Function</th>
<th>Contact activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>Min. duty</td>
<td>= Operating mode Min.</td>
</tr>
<tr>
<td>Max. duty</td>
<td>= Operating mode Max.</td>
</tr>
<tr>
<td>User-defined duty</td>
<td>= Operating mode User-defined</td>
</tr>
<tr>
<td>External fault</td>
<td>= External fault</td>
</tr>
<tr>
<td>Dry-running protection</td>
<td>= Water shortage</td>
</tr>
<tr>
<td>Flow switch</td>
<td>= Flow rate > Set switch value</td>
</tr>
<tr>
<td>Pressure switch</td>
<td>= Pressure > Set switch value</td>
</tr>
<tr>
<td>Reset of alarm</td>
<td>= Reset alarms</td>
</tr>
<tr>
<td>Alternative setpoint 2</td>
<td>= Setpoint 2, selected</td>
</tr>
<tr>
<td>Alternative setpoint 3</td>
<td>= Setpoint 3, selected</td>
</tr>
<tr>
<td>Alternative setpoint 4</td>
<td>= Setpoint 4, selected</td>
</tr>
<tr>
<td>Alternative setpoint 5</td>
<td>= Setpoint 5, selected</td>
</tr>
<tr>
<td>Alternative setpoint 6</td>
<td>= Setpoint 6, selected</td>
</tr>
<tr>
<td>Alternative setpoint 7</td>
<td>= Setpoint 7, selected</td>
</tr>
</tbody>
</table>

See the relevant sections for further information about the functions.
Generally a closed contact activates the function selected.
Setting via control panel
1. Mark the Settings menu with .
2. Mark Secondary functions with or and press .
3. Mark Digital inputs with or and press .
4. Select the digital input with or and press .
5. Select the desired function with or and activate it with .
The activation is indicated by a check mark in the box.

Factory setting

<table>
<thead>
<tr>
<th>Digital input</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1 (CU 351) [10]</td>
<td>External start/stop. Open contact = stop. Note: This digital input can not be changed.</td>
</tr>
</tbody>
</table>

Note: Monitoring of water shortage requires a pressure switch connected to the Hydro MPC.

10.7.20 Overview of analog inputs (4.3.8)

Description

In this menu the analog inputs of the Hydro MPC can be set. Each input can be activated and related to a certain function. As standard, the Hydro MPC has three analog inputs. If the Hydro MPC incorporates an IO 351B module (option), the number of analog inputs is 5.

In the display, all analog inputs are shown so that their physical position in the Hydro MPC can be identified.

Example

AI1 (CU 351) [51]:

<table>
<thead>
<tr>
<th>Analog input no. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CU 351): CU 351</td>
</tr>
<tr>
<td>[51]: Terminal no. 51</td>
</tr>
</tbody>
</table>

Setting range

In display Overview of analog inputs (4.3.8) the analog input to be set is selected.

Setting via control panel

1. Mark the Settings menu with .
2. Mark Secondary functions with or and press .
3. Mark Analog inputs with or and press .
4. Select the analog input with or and press .

10.7.21 Setting of analog inputs (4.3.8.1 to 4.3.8.7)

Description

In the displays 4.3.8.1 to 4.3.8.7, analog inputs can be set. Each display is divided into three parts:

- Setting of input signal, for instance 4-20 mA
- Measured input value, for instance discharge pressure
- Measuring range of the sensor/signal transmitter, for instance 0-16 bar.

Setting range

It is possible to set the following parameters in each display:

- Input deactivated
- Range of input signal, 0-10 V, 0-20 mA, 4-20 mA
- Measured input value
- Sensor range.

Setting via control panel

1. Mark the Settings menu with .
2. Mark Secondary functions with or and press .
3. Mark Analog inputs with or and press .
4. Select the analog input with or and press .
5. Mark the setting of the analog input with or and activate it with .

The activation is indicated by a check mark in the box.

Note

If an analog input is deactivated, the display will only show the top part, i.e. the setting of the analog input.

If the input is activated, the middle part Measured input value is shown. This makes it possible to relate a function to the analog input in another display. The displays in 10.7.22 show an example.

When the analog input has been related to a function, CU 351 will return to the display for setting of analog inputs.

Factory setting

<table>
<thead>
<tr>
<th>Analog input</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1 (CU 351) [51]</td>
<td>Discharge pressure</td>
</tr>
<tr>
<td>AI2 (CU 351) [54]</td>
<td>Precharge pressure (if Hydro MPC is supplied with measurement of precharge pressure)</td>
</tr>
<tr>
<td>AI3 (CU 351) [57]</td>
<td>Redundant primary sensor (if Hydro MPC is supplied with this option)</td>
</tr>
</tbody>
</table>
10.7.22 Functions of analog inputs (4.3.8.1.1 to 4.3.8.7.1)

Description
In the displays *Functions of analog inputs (4.3.8.1.1 to 4.3.8.7.1)*, a function can be related to the individual analog inputs.

Setting range
It is possible to select one function per analog input:
- Not used
- 0-100% signal
- Redundant primary sensor
- Inlet pressure
- Discharge pressure
- External pressure
- Differential pressure of pump
- Flow rate
- Tank level, discharge side
- Tank level, suction side.

Setting via control panel
1. Mark the **Settings** menu with .
2. Mark **Secondary functions** with § or and press .
3. Mark **Analog inputs** with § or and press .
4. Select the analog input with § or and press .
5. Mark and set the setting range of the analog input with § or and press .
6. Mark **Measured input value** with § or and press .
7. Select the input with § or and press .
8. Press § to return to display 4.3.8.x.
9. Set the minimum sensor value with § or and save with §.
10. Set the maximum sensor value with § or and save with §.

Fig. 49 Functions of analog inputs

10.7.23 Overview of digital outputs (4.3.9)

Description
In this menu the digital relay outputs of the Hydro MPC can be set. Each output can be activated and related to a certain function.

As standard, the Hydro MPC has two digital outputs.

If the Hydro MPC incorporates an IO 351B module (option), the number of digital outputs is 9.

In the display, all analog outputs are shown so that their physical position in the Hydro MPC can be identified.

Example
DO1 (IO 351-41) [71]:

For further information on the connection of various digital outputs, see the key diagram supplied with the CU 351.

Setting range
In display **Overview of digital outputs (4.3.9)** the digital output to be used is selected.

10.7.24 Function of digital outputs (4.3.9.1 to 4.3.9.16)

Description
In displays *Function of digital outputs (4.3.9.1 to 4.3.9.16)*, a function can be related to the individual outputs.

Fig. 51 Functions of digital outputs
Setting range

It is possible to select one function in each display:
- Not used
- System in operation
- Alarm, system
- Warning, system
- Ready, system
- Water shortage
- Min. pressure
- Max. pressure
- Pump 1 is running
- Pump 2 is running
- Pump 3 is running
- Pump 4 is running
- Pump 5 is running
- Pump 6 is running
- Alarm, pump 1
- Alarm, pump 2
- Alarm, pump 3
- Alarm, pump 4
- Alarm, pump 5
- Alarm, pump 6.

Setting via control panel

1. Mark the Settings menu with .
2. Mark Secondary functions with or and press .
3. Mark Digital outputs with or and press .
4. Select the digital output with or and press .
5. Mark the desired function with or and activate it with .

The activation is indicated by a check mark in the box.

Factory setting

<table>
<thead>
<tr>
<th>Digital output</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO1 (CU 351)</td>
<td>Alarm, system</td>
</tr>
<tr>
<td>DO2 (CU 351)</td>
<td>Operation, system</td>
</tr>
</tbody>
</table>

10.7.25 Min., max. and user-defined duty (4.3.14)

<table>
<thead>
<tr>
<th>Status</th>
<th>Operation</th>
<th>Alarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.14</td>
<td>Min. max.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select an operating mode and set the function.

- Min. duty
- Max. duty
- Set user-defined

Fig. 52 Min., max. and user-defined duty

Description

Hydro MPC is usually controlled in a closed loop to maintain a discharge pressure. In certain periods it may be necessary to let the booster set run in open loop at a set pump performance.

Setting range

The CU 351 makes it possible to change between three operating modes:
1. Min. duty (4.3.14.1)
2. Max. duty (4.3.14.2)
3. User-defined duty (4.3.14.3).

For each of these modes, the number of operating pumps and the pump performance (speed) can be set.

10.7.26 Min. duty (4.3.14.1)

Fig. 53 Min. duty

Description

In all booster sets apart from Hydro MPC-S, min. duty is only possible for variable-speed pumps. In Hydro MPC-S systems only the number of pumps running at 100% speed can be set.

Setting range

- Number of pumps in operation.
- Speed as percentage (25 to 100%) for variable-speed pumps.

Setting via control panel

1. Mark the Settings menu with .
2. Mark Secondary functions with or and press .
3. Mark Min., max. and user-defined duty with or and press .
4. Mark Min. duty with or and press .
5. Mark Number of pumps in operation with or .
6. Set the number with or and save with .
7. Mark Speed with or .
8. Set the value with or and save with .

Factory setting

| Number of pumps in operation during min. duty: | 1 |
| Speed as percentage for variable-speed pumps: | 70 |
10.7.27 Max. duty (4.3.14.2)

Fig. 54 Max. duty

Description
The function makes it possible for a set number of pumps to run at maximum speed when the function is activated.

Setting range
In this display the number of pumps to run in the operating mode Max. can be set. All pumps run at 100% speed.

Setting via control panel
1. Mark the **Settings** menu with .
2. Mark **Secondary functions** with or and press .
3. Mark **Min., max. and user-defined duty** with or and press .
4. Mark **Max. duty** with or and press .
5. Mark **Number of pumps in operation** with or .
6. Set the number with or and save with .

Factory setting
Number of pumps in operation during max. duty: All pumps (except standby pumps)

10.7.28 User-defined duty (4.3.14.3)

Fig. 55 User-defined duty

Description
In this display it is possible to set a user-defined performance, typically a performance between min. and max. duty.

The function makes it possible to set a pump performance by selecting the number of pumps to run and the speed of variable-speed pumps. This function primarily selects the variable-speed pumps. If the number of selected pumps exceeds the number of variable-speed pumps, mains-operated pumps are started too.

Setting range
- Number of pumps in operation.
- Speed as percentage for variable-speed pumps.

Note: In Hydro MPC booster sets with only variable-speed pumps the speed can be set between 25 and 100%; in booster sets with both variable-speed pumps and mains-operated pumps the speed can be set between 70 and 100%.

Setting via control panel
1. Mark the **Settings** menu with .
2. Mark **Secondary functions** with or and press .
3. Mark **Min., max. and user-defined duty** with or and press .
4. Mark **Set user-defined** with or and press .
5. Mark **Number of pumps in operation** with or .
6. Set the number with or and save with .
7. Mark **Speed** with or .
8. Set the value with or and save with .

Factory setting
The function is not activated as the following has been set:
Number of pumps in operation during user-defined duty: 0

10.7.29 Pump curve data (4.3.19)

Fig. 56 Pump curve data

Description
The CU 351 has a number of functions using the pump performance curves. At delivery the CU 351 contains data describing these performance curves, but it is also possible to enter these data. For this purpose use the pump nameplate which contains data on nominal flow rate, \(Q_{\text{nom}}\), nominal head, \(H_{\text{nom}}\), and maximum head, \(H_{\text{max}}\).
10.7.30 Pump data (4.3.19.1)

Fig. 57 Pump data

Description

In this menu it is possible to enter data describing the performance curve of pumps in order to optimise the operation.

Note This setting is not necessary, as pump curve data is entered at factory.

Setting range

- Nominal flow rate \(Q_{\text{nom}} \) in m³/h
- Nominal head \(H_{\text{nom}} \) in metres
- Max. head \(H_{\text{max}} \) in metres

Note \(Q_{\text{nom}} \) and \(H_{\text{nom}} \) are the rated duty point of the pumps and usually the duty point with the highest efficiency.

Setting via control panel

1. Mark the **Settings** menu with .
2. Mark **Secondary functions** with or and press .
3. Mark **Pump curve data** with or and press .
4. Mark **Entry of pump data** and press .
5. Mark **Nominal flow rate \(Q_{\text{nom}} \)** with or .
6. Set the value with or and save with .
7. Mark **Nominal head \(H_{\text{nom}} \)** with or .
8. Set the value with or and save with .
9. Mark **Max. head \(H_{\text{max}} \)** with or .
10. Set the value with or and save with .

10.7.31 Control source (4.3.20)

Fig. 58 Control source

Description

Hydro MPC can be remote-controlled via an external bus connection (option), see 10.8.2 GENibus. The setpoint and operating mode are then set via the bus connection.

In this display the control source, CU 351 or the external bus connection, is selected.

1. Mark the **Settings** menu with .
2. Mark **Secondary functions** with or and press .
3. Mark **Control source** with or and press .
4. Select the desired control source with or and save with .

Factory setting

The control source is CU 351.

10.7.32 Monitoring functions (4.4)

Fig. 59 Monitoring functions

Description

Hydro MPC has a series of functions that constantly monitor the operation of the booster set.

The primary purpose of the monitoring functions is to ensure that faults do not damage pumps or the system connected to the booster set.
Setting range
The following functions can be selected:
• Dry-running protection (4.4.1)
• Min. pressure (4.4.2)
• Max. pressure (4.4.3)
• External fault (4.4.4).

Setting via control panel
1. Mark the Settings menu with .
2. Mark Monitoring functions with or and press .
3. Select the function with or and press .

Factory setting
No function has been selected.

10.7.33 Dry-running protection (4.4.1)

Fig. 60 Dry-running protection

Description
Dry-running protection is one of the most important monitoring functions, as bearings and shaft seal may be damaged if the pumps run dry. Grundfos thus "requires" dry-running protection in connection with Hydro MPC booster sets.
The function is based on monitoring of the inlet pressure or the level in a possible tank or pit on the suction side.
Level switches, pressure switches or analog sensors signalling water shortage at a set level can be used.
There are three different methods for detection of water shortage:
• Pressure switch on suction manifold or float switch/electrode relay in the supply tank.
• Measurement of inlet pressure in the suction manifold by means of an analog pressure transmitter.
• Measurement of level in the supply tank by means of an analog level transmitter.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Monitoring functions with or and press .
3. Select the function with or and press .
4. Select the method with or and press .

Factory setting
If a pressure switch or pressure transmitter is fitted on the suction manifold, the relevant function has been selected and set.

10.7.34 Dry-running protection with pressure/level switch (4.4.1.1)

Fig. 61 Dry-running protection with pressure/level switch

Description
Dry-running protection can take place by means of a pressure switch on the suction manifold or a level switch in a possible tank on the suction side.
When the contact is open, the CU 351 will register water shortage after a time delay of approx. 5 sec. It is possible to set whether the indication is to be just a warning or an alarm stopping the pumps.
In the display it is possible to set whether restart and reset of the alarm is to be automatic or manual.

Setting range
• Selection of digital input for the function.
• Reaction in case of water shortage: Warning or alarm + stop.
• Restart: Manual or automatic.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Monitoring functions with or and press .
3. Mark Dry-running protection with or and press .
4. Mark Pressure/level switch with or and press .
5. Mark Go to setting of digital input and press . Now the display Overview of digital inputs (4.3.7) appears. Set the input to dry-running protection. Return with .
6. Mark Warning or Alarm + stop with or and save with .
7. Mark Manual or Auto with or and save with .

Factory setting
If the booster set is equipped with a pressure switch for dry-running protection, it is set to alarm + stop in case of water shortage.
Restart: Automatic.
10.7.35 Dry-running protection with pressure transmitter
(4.4.1.2)

<table>
<thead>
<tr>
<th>Status</th>
<th>Operation</th>
<th>Alarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4.1.2</td>
<td>Warning, inlet pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The analog input for the measurement of inlet pressure must be set to activate this function.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to setting of analog input

Activate dry-running protection
- Inlet pressure level
 - Warning: 0.2 bar
 - Alarm + stop: 0.0 bar
- Restart
 - Manual
 - Auto

Note: If one of the levels is not required, the level value must be the minimum value of the inlet pressure transmitter. This deactivates the function.

Factory setting
If the booster set is supplied with a pressure transmitter, the transmitter has been set.

The warning level is defined by customer at time of order. The function is activated.

Restart: Automatic.

10.7.36 Dry-running protection with level transmitter (4.4.1.3)

<table>
<thead>
<tr>
<th>Status</th>
<th>Operation</th>
<th>Alarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4.1.3</td>
<td>Warning, inlet level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The analog input for the measurement of tank level must be set to activate this function.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to setting of analog input

Activate dry-running protection
- Tank level
 - Warning: 0.0 bar
 - Alarm + stop: 0.0 bar
- Restart
 - Manual
 - Auto

Factory setting
The function is deactivated.

Note: If one of the levels is not required, the level value must be the minimum value of the inlet pressure transmitter. This deactivates the function.
10.7.37 Min. pressure (4.4.2)

Description
The discharge pressure can be monitored so that the CU 351 can react if the pressure becomes lower than a set minimum level for an adjustable time.

The minimum pressure can be monitored if a fault indication is required in situations where the discharge pressure becomes lower than the set minimum pressure.

It is possible to set whether the indication is to be just a warning or an alarm stopping the pumps. This may be desirable if Hydro MPC is used for an irrigation system where a very low discharge pressure may be due to pipe fracture and thus an extraordinarily high consumption and a very low counter pressure. In such situations it is desirable that the booster set stops and indicates alarm. This situation will require a manual reset of the Hydro MPC.

It is possible to set a start-up delay ensuring that the Hydro MPC can build up pressure before the function is activated. It is also possible to set a time delay, i.e. for how long time the discharge pressure may be lower than the set minimum pressure before the alarm is activated.

Setting range
• Activation of the function.
• Minimum pressure level within the range of the primary sensor.
• Activation of stop when the pressure falls below the minimum pressure.
• Time delay at start-up.
• Time delay during operation.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Monitoring functions with or and press .
3. Mark Min. pressure with or and press .
4. Mark Activated with or and press to activate/deactivate the function.
5. Mark Min. pressure with or . Set the pressure with or and save with .
6. Mark Stop at min. pressure with or and press to activate/deactivate the function.
7. Mark Time delay of function at start-up with or . Set the time with or and save with .
8. Mark Time delay of function during operation with or . Set the time with or and save with .

Factory setting
The function is activated per data on customer order.

10.7.38 Max. pressure (4.4.3)

Description
The discharge pressure can be monitored so that the CU 351 can react if the pressure becomes higher than a set maximum level.

In certain installations a too high discharge pressure may cause damage. It may therefore be necessary to stop all pumps for a short period if the pressure is too high.

It is possible to set whether the Hydro MPC is to restart automatically after the pressure has dropped below the maximum level, or if the system must be reset manually. Restart will be delayed by an adjustable time, see Min. time between start/stop (4.2.1).

Setting range
• Activation of the function.
• Maximum pressure level within the range of the primary sensor.
• Manual or automatic restart after fault.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Monitoring functions with or and press .
3. Mark Max. pressure with or and press .
4. Mark Activated with or and press to activate/deactivate the function.
5. Mark Max. pressure with or . Set the pressure with or and save with .
6. Mark Manual or Auto with or . Activate the function with .

Factory setting
The function is activated per data on customer order.
10.7.39 External fault (4.4.4)

Description
The function is used when the CU 351 is to be able to receive a fault signal from an external contact. In case of external fault, the CU 351 indicates warning or alarm. In case of alarm, the booster set changes to another manual operating mode, for instance Stop.

Setting range
- Selection of digital input for the function.
- Setting of time delay from closing of the contact until the CU 351 reacts.
- Reaction in case of external fault: Warning or alarm and change of operating mode.
- Restart after alarm: Manual or automatic.

Setting via control panel
1. Mark the Settings menu with
2. Mark Monitoring functions with or and press
3. Mark External fault with or and press
4. Mark Go to setting of digital input with or and press .
5. Mark Time delay, fault indication with or .
6. Mark Warning with or if only a warning is required in case of external fault. Activate the function with .
7. Select operating mode with or if the booster set is to give alarm and change operating mode in case of external fault. Activate the function with .
8. Mark Manual or Auto with or . Activate the function with .

Factory setting
The function is deactivated. If the function is activated, the following values have been set from factory:
- Time delay: 5 seconds
- Operating mode in case of alarm: Stop.
- per order default if active
- DI 3

10.7.40 Functions, CU 351 (4.5)

Description
In this submenu it is possible to make the basic settings of the CU 351.

CU 351 comes with most of these settings, or they are made at start-up and normally not to be changed.

The service language, English, can be activated for service purposes. If no buttons are touched for 15 minutes, the display returns to the language selected at start-up or to the language set in 10.7.41 Display language (4.5.1).

If the service language is selected, the symbol will be shown to the right of the top line of all displays.

Setting range
- Activation of service language, British English.
- Re-activation of start-up wizard. (After start-up, the wizard is inactive.)
- Selection of display language.
- Selection of units in the display.
- Setting date and time.
- Selection of password for the menus Operation and Settings.
- Setting of Ethernet communication.
- Setting of GENIBus number.
- Reading of software status.

10.7.41 Display language (4.5.1)

Note
If the service language is selected, the symbol will be shown to the right of the top line of all displays.
Description
Here the language for the CU 351 display is selected.

Setting range
- English
- German
- French
- Italian
- Spanish
- Portuguese
- Greek
- Netherlands
- Swedish
- Finnish
- Danish
- Polish
- Russian
- Chinese
- Korean.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Functions, CU 351 with or and press .
3. Mark Display language with or and press .
4. Select language with or and save with .

Factory setting
The display language is English. It can be changed at start-up.

10.7.42 Display units (4.5.2)

<table>
<thead>
<tr>
<th>Setting range</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Basic setting</th>
<th>Possible units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>bar psi kPa, MPa, mbar, bar, m, psi</td>
<td></td>
</tr>
<tr>
<td>Differential pressure</td>
<td>m psi kPa, MPa, mbar, bar, m, psi</td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>m ft m, cm, ft, in</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>m ft m, cm, ft, in</td>
<td></td>
</tr>
<tr>
<td>Flow rate</td>
<td>m³/h gpm m³/s, m³/h, l/s, gpm, yd³/s, yd³/min, yd³/h</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>m³ gal l, m³, gal, yd³</td>
<td></td>
</tr>
<tr>
<td>Specific energy</td>
<td>kWh/m³ Wh/gal J/m³, kWh/m³, Wh/gal, Wh/kgal, BTU/gal, HPh/gal</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°C °F K, °C, °F</td>
<td></td>
</tr>
<tr>
<td>Differential temperature</td>
<td>K K K</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>kW HP W, kW, MW, HP</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>kWh kWh J, kWh, MWh, BTU, HPh</td>
<td></td>
</tr>
</tbody>
</table>

Note: If units are changed from SI to US or vice versa, all individually set parameters are changed to the basic setting in question.

Setting via control panel
1. Mark the Settings menu with .
2. Mark Functions, CU 351 with or and press .
3. Mark Display units with or and press .
4. Select the unit with or and save with .
 A check mark shows that the unit has been selected.
5. Select the measuring parameter with or and press to open the display for the measuring parameter.
 See the example.

Fig. 69 Display units

Description
In this display it is possible to select units for the various parameters.
For the basic setting it is possible to select between SI and US units. It is also possible to select other units for the individual parameters.

6. Select the unit with or and save with .
 A check mark shows that the unit has been selected.

Factory setting
CU 351 has been set to US units from factory.
10.7.43 Date and time (4.5.3)

Description
In this display, date and time are set as well as how they are to be shown in the display.

The clock has a built-in rechargeable voltage supply which can supply the clock for up to 20 days if the voltage supply to the Hydro MPC is interrupted.

If the clock is without voltage for more than 20 days, it must be set again.

Setting range
The date can be set as day, month and year. The time can be set as a 24-hour clock showing hours and minutes.

There are three formats.

Setting via control panel
1. Mark the Settings menu with
2. Mark Secondary functions with or and press
3. Mark Date and time with or and press
4. Mark Day, Month and Year with or and set the date with or . Save with
5. Mark Hours and Minutes with or and set the time with or . Save with
6. Select the format with or and save with

Factory setting
Local time.

Note: If you have forgotten the password(s), contact Grundfos.

10.7.44 Passwords (4.5.4)

Description
In this display it is possible to limit the access to the Operation and Settings menus by means of a password. If the access is limited, it is not possible to view or set any parameters in the menus.

The password must consist of four digits and may be used for both menus.

Note: If you have forgotten the password(s), contact Grundfos.

Setting via control panel
1. Mark the Settings menu with
2. Mark Functions, CU 351 with or and press
3. Mark Password with or and press
4. Mark the password to be activated and press
5. Mark Enter password and press
Now the first digit of the password is flashing.
6. Select the digit with or and save with
Now the second digit of the password is flashing.
7. Repeat points 4 to 6 to activate the other password.

Factory setting
Both passwords are deactivated. If a password is activated, the factory setting is “6814”.

10.7.45 Ethernet (4.5.5)

Description
There is no automatic changeover to/from daylight saving time.

Setting via control panel
1. Mark the Settings menu with
2. Mark Secondary functions with or and press
3. Mark Ethernet with or and press
4. Mark Host name with or and set the host name with
5. Mark Use DHCP with or and press

Factory setting
Note: There is no automatic changeover to/from daylight saving time.

Note: If you have forgotten the password(s), contact Grundfos.
Description
CU 351 is equipped with an Ethernet connection for communication with a computer, either directly or via Internet. For further information, see 10.8.1 **Ethernet**.

10.7.46 GENIbus number (4.5.6)

<table>
<thead>
<tr>
<th>Status</th>
<th>Operation</th>
<th>Alarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIbus number for external communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 74 GENIbus number

Description
CU 351 can communicate with external units via an RS-485 interface (option). For further information see fig. 76 and 10.8.2 **GENIbus**.

Communication is carried out according to the Grundfos bus protocol, GENIbus, and enables connection to a building management system or another external control system.

Operating parameters, such as setpoint and operating mode, can be set via the bus signal. Furthermore, status about important parameters, such as current value and input power, and fault indications can be read from the CU 351.

Contact Grundfos for further information.

Setting range
The number can be set between 1 and 64.

Setting via control panel
1. Mark the **Settings** menu with .
2. Mark **Functions, CU 351** with or and press .
3. Mark **GENIbus number** with or and press .
4. Select the number with or and save with .

Factory setting
No number is set ("-").

10.7.47 Software status (4.5.9)

Fig. 75 Software status

Description
This display shows the status of the software installed in the CU 351. Furthermore the version code and the product numbers of configuration files (.gsc) read into the unit are shown. As it is a status display, no settings can be made.
10.8 Data communication

CU 351 is equipped with a hardware enabling communication with external units, such as a computer, via an external GENIbus or Ethernet connection.

Fig. 76 Data communication via external GENIbus and Ethernet connection

10.8.1 Ethernet

Ethernet is the most widely used standard for local networks (LAN). The standardization of this technology has created some of the easiest way of creating communication between electrical units, for instance between computers or between computers and control units. The web server of the CU 351 makes it possible to connect a computer to the CU 351 via an Ethernet connection. The user interface can thus be exported from the CU 351 to a computer so that the CU 351 and consequently the Hydro MPC booster set can be monitored and controlled externally.

In order to use the web server, you must know the IP address of the CU 351. All network units must have a unique IP address in order to communicate with each other. The IP address of CU 351 from factory is 192.168.0.102.

Alternatively to the factory-set IP address it is possible to use a dynamic assignment of IP address. This is possible by activating a DHCP (Dynamic Host Configuration Protocol) either directly in the CU 351 or via the web server. See the example in fig. 77.

Fig. 77 Example of setting of Ethernet

A traditional Internet browser is used for connection to the web server of the CU 351.

If you want to use the factory-set IP address, no changes are required in the display. Open the Internet browser and enter the IP address of the CU 351.

In order to use dynamic assignment, the function must be activated. Click **Use DHCP** in the menu line. A check mark next to the menu line shows that activation has been made.

After activation in the display, open the Internet and enter the host name of the CU 351 instead of the IP address. The Internet browser will now try to connect to the CU 351. The host name can be read in the display, but can only be changed by either a .gsc-file (configuration file) or via a web server, see Change of network setting on page 49.

Note To use DHCP, a host name is required.

This is the first display shown when connecting to the CU 351.
Factory setting

User name: admin
Password: admin

When user name and password have been entered, a Java Runtime Environment application starts up in the CU 351, provided that it has been installed on the computer in question. If this is not the case, but the computer is connected to Internet, then use the link on the screen to download and install the Java Runtime Environment application.

The Java Runtime Environment application will then export the CU 351 user interface (including display and operating panel) to the computer screen. It is now possible to monitor and control the CU 351 from the computer.

Change of network setting

When connection to the web server of the CU 351 has been established, it is possible to change the network setting.

1. Press the icon \texttt{Network admin}.
2. Enter the changes.
3. Press \texttt{Submit} to activate the changes.
Change of password

![Change of password](image)

Fig. 82 Change of password

1. Press the icon **Change password**.
2. Enter the new password.
3. Press **Submit** to activate the new password.

10.8.2 GENIbus

By installing a GENIbus module it is possible to connect a CU 351 to an external network. The connection can take place via a GENIbus-based network or a network based on another protocol via a gateway, see fig. 76. For further information, contact Grundfos.

The gateway may be a Grundfos G100 gateway or a third party gateway. For further information on the G100 gateway, see the G100 data booklet (publication number V7139522).
11. External frequency converter settings

External frequency converter(s) used in Hydro MPC booster set variants F, EF and EDF are delivered with the manufacturer’s factory settings, see table below.

At start-up, the factory settings must be changed to the Grundfos settings in the table below.

11.1 VLT 2800

Press [QUICK MENU] + [+] to access all parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory setting</th>
<th>Grundfos setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Local/remote operation</td>
<td>Local/remote operation 0</td>
</tr>
<tr>
<td>3</td>
<td>Local reference</td>
<td>Local reference 0</td>
</tr>
<tr>
<td>101</td>
<td>Torque characteristics</td>
<td>Torque characteristics 2</td>
</tr>
<tr>
<td>102</td>
<td>Motor power</td>
<td>Motor power Motor nameplate in kW</td>
</tr>
<tr>
<td>103</td>
<td>Motor voltage</td>
<td>Motor voltage Motor nameplate</td>
</tr>
<tr>
<td>104</td>
<td>Motor frequency</td>
<td>Motor frequency Motor nameplate, Hz</td>
</tr>
<tr>
<td>105</td>
<td>Motor current</td>
<td>Motor current Motor nameplate, SFA</td>
</tr>
<tr>
<td>106</td>
<td>Rated motor speed</td>
<td>Rated motor speed Motor nameplate RPM</td>
</tr>
<tr>
<td>107</td>
<td>Automatic motor adaptation</td>
<td>Automatic motor adaptation 2</td>
</tr>
<tr>
<td>128</td>
<td>Thermal motor protection</td>
<td>Thermal motor protection 4</td>
</tr>
<tr>
<td>204</td>
<td>Minimum reference</td>
<td>Minimum reference 20 Hz</td>
</tr>
<tr>
<td>205</td>
<td>Maximum reference</td>
<td>Maximum reference 62 Hz</td>
</tr>
<tr>
<td>206</td>
<td>Ramp type</td>
<td>Ramp type 2</td>
</tr>
<tr>
<td>207</td>
<td>Ramp up time</td>
<td>Ramp up time 1.5 sec</td>
</tr>
<tr>
<td>208</td>
<td>Ramp down time</td>
<td>Ramp down time 3 sec</td>
</tr>
<tr>
<td>214</td>
<td>Reference function</td>
<td>Reference function 2</td>
</tr>
<tr>
<td>215</td>
<td>Preset reference</td>
<td>Preset reference 100</td>
</tr>
<tr>
<td>302</td>
<td>Digital input</td>
<td>Digital input 7</td>
</tr>
<tr>
<td>304</td>
<td>Digital input</td>
<td>Digital input 0</td>
</tr>
<tr>
<td>305</td>
<td>Digital input6</td>
<td>Digital input6 24</td>
</tr>
<tr>
<td>323</td>
<td>Relay output</td>
<td>Relay output 1</td>
</tr>
<tr>
<td>406</td>
<td>Automatic restart time</td>
<td>Automatic restart time 10 sec</td>
</tr>
<tr>
<td>411</td>
<td>Switching frequency</td>
<td>Switching frequency 4500</td>
</tr>
</tbody>
</table>

* Thermistor function used for thermal protection of LC filter.
** For information about languages available, see relevant documentation.
*** Use data from the Hydro MPC booster set.

Factory setting of VLT 2800

To recall the factory settings of all parameters, follow one of the procedures below:

1. Set the parameter 620 to (3).
2. Disconnect the power supply.
3. Re-connect the power supply.
4. All parameters are now factory-set except from the fault log.
 or
1. Disconnect the power supply.
2. Press and hold [QUICK MENU] + [+] + [CHANGE DATA] and re-connect the power supply.
3. All parameters are now factory-set, including the fault log.
11.2 Danfoss VLT 8000 factory settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
<th>Grundfos setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>002</td>
<td>Motor power</td>
<td>Motor nameplate</td>
</tr>
<tr>
<td>003</td>
<td>Motor voltage</td>
<td>Motor nameplate</td>
</tr>
<tr>
<td>004</td>
<td>Motor frequency</td>
<td>Motor nameplate</td>
</tr>
<tr>
<td>005</td>
<td>Motor current</td>
<td>Motor nameplate (SFA)</td>
</tr>
<tr>
<td>006</td>
<td>Motor speed</td>
<td>Motor nameplate (RPM)</td>
</tr>
<tr>
<td>201</td>
<td>Minimum frequency</td>
<td>20 Hz</td>
</tr>
<tr>
<td>202</td>
<td>Maximum frequency</td>
<td>62 Hz</td>
</tr>
<tr>
<td>207</td>
<td>Ramp up time</td>
<td>1.5 sec</td>
</tr>
<tr>
<td>208</td>
<td>Ramp down time</td>
<td>3 sec</td>
</tr>
<tr>
<td>323</td>
<td>Relay 1 function</td>
<td>Ready signal</td>
</tr>
<tr>
<td>326</td>
<td>Relay 2 function</td>
<td>Running</td>
</tr>
</tbody>
</table>

11.3 Danfoss VLT 8000 extended menu programming

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
<th>Grundfos setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>Large readout</td>
<td>Frequency [Hz]</td>
</tr>
<tr>
<td>008</td>
<td>Small display readout</td>
<td>Motor voltage [V]</td>
</tr>
<tr>
<td>009</td>
<td>Small display readout</td>
<td>Motor current</td>
</tr>
<tr>
<td>010</td>
<td>Small display readout</td>
<td>Power [Hp]</td>
</tr>
<tr>
<td>101</td>
<td>Torque characteristics</td>
<td>VT low</td>
</tr>
<tr>
<td>113</td>
<td>Motor Preheater DC Current</td>
<td>0%</td>
</tr>
<tr>
<td>117</td>
<td>Motor Thermal Protection</td>
<td>ETR Trip 1</td>
</tr>
<tr>
<td>208</td>
<td>Automatic ramp-down</td>
<td>Disable</td>
</tr>
<tr>
<td>210</td>
<td>Reference type</td>
<td>External/preset</td>
</tr>
<tr>
<td>302</td>
<td>Pin 18</td>
<td>Start</td>
</tr>
<tr>
<td>303</td>
<td>Pin 19</td>
<td>Reverse and start</td>
</tr>
<tr>
<td>304</td>
<td>Pin 27</td>
<td>Safety interlock</td>
</tr>
<tr>
<td>308</td>
<td>Pin 53</td>
<td>Reference</td>
</tr>
<tr>
<td>309</td>
<td>Term. 53, min. scaling</td>
<td>0.0 V</td>
</tr>
<tr>
<td>310</td>
<td>Term. 53, max. scaling</td>
<td>10 V</td>
</tr>
<tr>
<td>325</td>
<td>Relay 01, off delay</td>
<td>1 sec.</td>
</tr>
<tr>
<td>400</td>
<td>Reset function</td>
<td>Automatic reset x 10</td>
</tr>
<tr>
<td>401</td>
<td>Automatic restart time</td>
<td>5 sec.</td>
</tr>
<tr>
<td>407</td>
<td>Switching frequency</td>
<td>4500</td>
</tr>
<tr>
<td>408</td>
<td>Interference reduction method</td>
<td>Fixed switching freq.</td>
</tr>
<tr>
<td>016</td>
<td>Lock for data change</td>
<td>Locked</td>
</tr>
</tbody>
</table>
11.4 Baldor Smart motor settings

<table>
<thead>
<tr>
<th>Section</th>
<th>Parameter</th>
<th>Grundfos setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Level 2 blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output limits</td>
<td>Min. output frequency</td>
<td>12 Hz</td>
</tr>
<tr>
<td>Output limits</td>
<td>Max. output</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Output limits</td>
<td>PK current limit</td>
<td>Max. of drive</td>
</tr>
<tr>
<td>Output limits</td>
<td>PWM frequency</td>
<td>6 kHz</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Restart aut/man</td>
<td>Auto</td>
</tr>
<tr>
<td>Motor data</td>
<td>Motor voltage</td>
<td>230 V</td>
</tr>
<tr>
<td>Motor data</td>
<td>Motor rated amps</td>
<td>SFA on nameplate</td>
</tr>
<tr>
<td>Level 1 blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preset speed</td>
<td>Preset speed #1</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Accel</td>
<td>Accel #1</td>
<td>CR 3 - CR 10 1.5 sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 15 - CR 90 2.0 sec.</td>
</tr>
<tr>
<td>Decel rate</td>
<td>Decel #1</td>
<td>CR 3 - CR 10 3.0 sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 15 - CR 90 4.0 sec.</td>
</tr>
<tr>
<td>Output</td>
<td>Opto output #1</td>
<td>Ready</td>
</tr>
<tr>
<td>Input</td>
<td>Operating mode</td>
<td>#1 2 wire / 7 spd</td>
</tr>
<tr>
<td>Input</td>
<td>ANA CMD select</td>
<td>Pot. / 0-10 V</td>
</tr>
<tr>
<td>V/Hz and Boost</td>
<td>V/Hz profile</td>
<td>67% sqr. law</td>
</tr>
</tbody>
</table>
12. Fault finding chart

Warning

Before making any connections in pumps, terminal boxes or breaker cabinet, make sure that the electricity supply has been switched off for at least 5 minutes and that it cannot be accidentally switched on.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps do not run when started.</td>
<td>Current pressure is higher than or equal to the setpoint.</td>
<td>Wait until the pressure has dropped or lower the pressure on the discharge side of the Hydro MPC and check that the pumps start.</td>
</tr>
<tr>
<td></td>
<td>Electricity supply disconnected.</td>
<td>Connect the electricity supply.</td>
</tr>
<tr>
<td></td>
<td>Main switch cut out.</td>
<td>Cut in the main switch.</td>
</tr>
<tr>
<td></td>
<td>Main switch is defective.</td>
<td>Replace the main switch.</td>
</tr>
<tr>
<td></td>
<td>Motor protection is activated.</td>
<td>Contact Grundfos.</td>
</tr>
<tr>
<td></td>
<td>Motor is defective.</td>
<td>Repair or replace the motor.</td>
</tr>
<tr>
<td></td>
<td>Pressure transmitter fault</td>
<td>Replace the pressure transmitter.</td>
</tr>
<tr>
<td></td>
<td>- Pressure transmitter is defective.</td>
<td>Transmitters with 0-20 mA or 4-20 mA output signals are monitored by Hydro MPC.</td>
</tr>
<tr>
<td></td>
<td>- Cable is broken or short-circuited.</td>
<td>Repair or replace the cable.</td>
</tr>
<tr>
<td>The pumps start, but stop immediately.</td>
<td>Dry running or no inlet pressure.</td>
<td>Re-establish the supply of water to the Hydro MPC. When the inlet pressure has been re-established, the pumps will restart after 15 seconds.</td>
</tr>
<tr>
<td>The Hydro MPC is stopped and cannot restart.</td>
<td>Pressure transmitter fault</td>
<td>Replace the pressure transmitter.</td>
</tr>
<tr>
<td></td>
<td>- Pressure transmitter is defective.</td>
<td>Transmitters with 0-20 mA or 4-20 mA output signals are monitored by the Hydro MPC.</td>
</tr>
<tr>
<td></td>
<td>- Cable is broken or short-circuited.</td>
<td>Repair or replace the cable.</td>
</tr>
<tr>
<td>Unstable water delivery from Hydro MPC (applies to unstable water supply).</td>
<td>Inlet pressure is too low.</td>
<td>Check the suction pipe and possible suction strainer.</td>
</tr>
<tr>
<td></td>
<td>Suction pipe or pumps partly blocked by impurities.</td>
<td>Clean the suction pipes or pumps.</td>
</tr>
<tr>
<td></td>
<td>Pumps suck air.</td>
<td>Check the suction pipe for leakages.</td>
</tr>
<tr>
<td></td>
<td>Pressure transmitter defective.</td>
<td>Replace the transmitter.</td>
</tr>
<tr>
<td>Pumps are running, but deliver no water.</td>
<td>The valves are closed.</td>
<td>Open the valves.</td>
</tr>
<tr>
<td></td>
<td>Suction pipe or pumps blocked by impurities.</td>
<td>Clean the suction pipe or pumps.</td>
</tr>
<tr>
<td></td>
<td>Non-return valve blocked in closed position.</td>
<td>Clean the non-return valve. The non-return valve must move freely.</td>
</tr>
<tr>
<td></td>
<td>Suction pipe leaky.</td>
<td>Check the suction pipe for leakages.</td>
</tr>
<tr>
<td></td>
<td>Air in suction pipe or pumps.</td>
<td>Vent and prime the pumps. Check the suction pipe for leakages.</td>
</tr>
<tr>
<td>The Hydro MPC is unable to reach the setpoint.</td>
<td>Too high consumption.</td>
<td>Reduce consumption (if possible). - Install a bigger Hydro MPC booster set.</td>
</tr>
<tr>
<td>Leakage from the shaft seal.</td>
<td>Shaft seal is defective.</td>
<td>Replace the shaft seal.</td>
</tr>
<tr>
<td></td>
<td>Height adjustment of pump shaft inaccurate.</td>
<td>Readjust the shaft height.</td>
</tr>
<tr>
<td>Noise.</td>
<td>The pumps are cavitating.</td>
<td>Clean the suction pipe/pumps and possibly the suction strainer.</td>
</tr>
<tr>
<td></td>
<td>The pumps do not rotate freely (friction resistance) due to inaccurate height adjustment of the pump shaft.</td>
<td>Readjust the shaft height.</td>
</tr>
<tr>
<td>Very frequent starts and stops.</td>
<td>Wrong diaphragm tank precharge pressure.</td>
<td>Set correct precharge pressure.</td>
</tr>
</tbody>
</table>
13. Maintenance

Warning
Before starting work on the pumps, make sure that the electricity supply has been switched off. Lock the mains switch with a padlock to ensure that it cannot be accidentally switched on.

13.1 Pumps
Pump bearings and shaft seal are maintenance-free.

13.2 Motor bearings
Motors without grease nipples are maintenance-free. Motors with grease nipples should be lubricated with a high-temperature lithium-based grease, see the instructions on the fan cover of Grundfos motors.

In the case of seasonal operation (motor is idle for more than 6 months of the year), it is recommended to grease the motor when the pump is taken out of operation.

13.3 CU 351
The CU 351 is maintenance-free. It must be kept clean and dry. Furthermore, the CU 351 must not be outside the ambient temperature range, see 16. Technical data.

14. Frost protection
Pumps which are not being used during periods of frost should be drained to avoid damage.

Drain the pump by loosening the vent screw in the pump head and by removing the drain plug from the base.

Warning
Care must be taken to ensure that the escaping water does not cause injury to persons or damage to the motor or other components. In hot water installations, special attention should be paid to the risk of injury caused by scalding hot water.

Do not tighten the vent screw and replace the drain plug until the pump is to be used again.

15. Taking out of operation
Switch off the mains switch to take the booster set out of operation.

Warning
The conductors in front of the mains switch are still energized. Lock the mains switch with a padlock to ensure that it cannot be accidentally switched on. Individual pumps are taken out of operation by switching off the corresponding motor starter, automatic circuit breaker or fuse. Follow a lock out tag out procedure.

16. Technical data

16.1 Pressure
Inlet pressure
Hydro MPC booster sets can operate with a positive inlet pressure (precharged pressure system) or with a negative inlet pressure (i.e. vacuum at the inlet manifold).

Calculation of the inlet pressure is recommended when
- water is drawn through long pipes,
- water is drawn from depths,
- inlet conditions are poor.

In this installation and operating instruction the term 'inlet pressure' is defined as the pressure/vacuum which can be measured immediately before the booster set.

To avoid cavitation, make sure that there is a minimum inlet pressure on the suction side of the booster set. The minimum inlet pressure in bar can be calculated as follows:

\[H = P_b - \text{NPSH} - H_f - H_v - H_s \]

- \(P_b \) = Barometric pressure in feet (33.9 feet at sea level). In closed systems, \(P_b \) indicates system pressure in feet.
- \(H_f \) = Friction loss in suction piping in feet. (At the highest flow the pump will be delivering).
- \(H_v \) = Vapor pressure in feet.
- \(\text{NPSH} \) = Net Positive Suction Head in feet.

NPSH can be read from the NPSH curve at the maximum capacity at which the pump will run. (See installation and operating instructions for CR, CRI, CRN).

\(H_s \) = Safety margin = minimum 2 feet.

If "H" is calculated as positive, the pump can operate at a suction of maximum "H" feet. If "H" is calculated as negative, an inlet pressure (psia) if minimum "H" feet is required.

<table>
<thead>
<tr>
<th>Maximum inlet pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
</tr>
<tr>
<td>50 Hz</td>
</tr>
<tr>
<td>CR(E) 3-10</td>
</tr>
<tr>
<td>CR(E) 5-4 to CRI(E) 5-10</td>
</tr>
<tr>
<td>CR(E) 10-3 to CRI(E) 10-6</td>
</tr>
<tr>
<td>CR(E) 15-5</td>
</tr>
<tr>
<td>CR(E) 20-5</td>
</tr>
<tr>
<td>CR(E) 32-4</td>
</tr>
<tr>
<td>CR(E) 45-2</td>
</tr>
<tr>
<td>CR(E) 45-3 to CR(E) 45-4</td>
</tr>
<tr>
<td>CR(E) 64-4-2</td>
</tr>
<tr>
<td>CR(E) 90-3</td>
</tr>
<tr>
<td>60 Hz</td>
</tr>
<tr>
<td>CR(E) 5-7</td>
</tr>
<tr>
<td>CR(E) 10-3</td>
</tr>
<tr>
<td>CR(E) 15-3</td>
</tr>
<tr>
<td>CR(E) 20-3</td>
</tr>
<tr>
<td>CR(E) 32-2</td>
</tr>
<tr>
<td>CR(E) 45-2-1</td>
</tr>
<tr>
<td>CR(E) 64-2-1</td>
</tr>
<tr>
<td>CR(E) 90-2-1</td>
</tr>
</tbody>
</table>

The maximum inlet pressure is determined by the construction of the pump, such as bearing pressure.

Note
For information about other CR pump sizes, see WebCAPS on www.grundfos.com.

Operating pressure
As standard the maximum operating pressure is 230 psi [16 bar].

On request, Grundfos offers Hydro MPC booster sets with a maximum operating pressure higher than 230 psi [16 bar].
16.2 Temperature
Liquid temperature: 32°F to +158°F
Ambient temperature: 32°F to +104°F

16.3 Relative humidity
Max. relative humidity: 95%

16.4 Sound pressure
For sound pressure level, see the installation and operating instructions for the CR pumps.
The sound pressure level for a number of pumps can be calculated as follows:
\[L_{\text{max.}} = L_{\text{pump}} + (n - 1) \times 3 \]
\[L_{\text{max.}} = \text{Maximum sound pressure level.} \]
\[L_{\text{pump}} = \text{Sound pressure level for one pump.} \]
\[n = \text{Number of pumps.} \]

17. Electrical data
Supply voltage
See nameplate of the Hydro MPC.
Back-up fuse
See the wiring diagram supplied with the Hydro MPC.

Digital inputs
Open circuit voltage: 24 VDC
Closed circuit current: 5 mA, DC
Frequency range: 0-4 Hz

Note: All digital inputs are supplied with PELV voltage (Protective Extra-Low Voltage).

Analog inputs
Input current and voltage: 0-20 mA, 4-20 mA, 0-10 V
Tolerance: ±3.3% of full scale
Repetitive accuracy: ±1% of full scale
Input resistance, current: < 250 Ω
Input resistance, voltage, CU 351: 10 kΩ ±10%
Input resistance, voltage, IO 351: > 50 kΩ ±10%
Supply to sensor: 24 V, maximum 50 mA, short-circuit protected

Note: All analog inputs are supplied with PELV voltage (Protective Extra-Low Voltage).

Digital outputs (relay outputs)
Maximum contact load: 240 VAC, 2 A
Minimum contact load: 5 VDC, 10 mA

All digital outputs are potential-free relay contacts.

Note: Some outputs have a common C terminal. For further information, see the wiring diagram supplied with the Hydro MPC.

Inputs for PTC sensors/thermal switch
For PTC sensors to DIN 44082. Thermal switches can also be connected.
Open circuit voltage: 12 VDC ±15%
Closed circuit current: 2.6 mA, DC

18. Related documents
Further product information about Hydro MPC booster sets can be found in the following documents.

<table>
<thead>
<tr>
<th>Title</th>
<th>Frequency</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data booklets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundfos Hydro MPC</td>
<td>50 Hz</td>
<td>96605939</td>
</tr>
<tr>
<td>Grundfos Hydro MPC</td>
<td>60 Hz</td>
<td>L-BFQ-PG-01</td>
</tr>
<tr>
<td>Installation and operating instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR, CRI, CRN</td>
<td>60 Hz</td>
<td>L-CP-TL-003</td>
</tr>
<tr>
<td>CRE, CRIE, CRNE, CRKE, SPKE, MTRE, CHIE *</td>
<td>60 Hz</td>
<td>L-MLE-TL-02</td>
</tr>
<tr>
<td>Frequency converter **</td>
<td>50/60 Hz</td>
<td>-</td>
</tr>
<tr>
<td>Baldor smart motor</td>
<td>-</td>
<td>MN750</td>
</tr>
</tbody>
</table>

Service kits
Service kits for Hydro MPC 50/60 Hz 96488862

Wiring diagram - -

* Only relevant for Hydro MPC-E, -ED and -ES booster sets.
** Only relevant for Hydro MPC booster sets with external frequency converter.

19. Disposal
This product or parts of it must be disposed of in an environmentally sound way:
1. If this is not possible, contact the nearest Grundfos company or service workshop.

Open circuit voltage: 12 VDC ±15%
Closed circuit current: 2.6 mA, DC

Subject to alterations.